
 

Improving Performance with MySQL Performance Schema 
 
 
Jesper Wisborg Krogh 
Principal Technical Support Engineer, MySQL 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 2 

Background Information 
To login to the virtual machine: 

Username ouser 

Password Oracle123 

Root password Oracle123 

 

Installed software: 
The following MySQL software has been installed: 

Software Abbreviation Notes 

MySQL Server 5.7.2 MySQL  

MySQL Enterprise Monitor 3.0.1 MEM Backend MySQL is 5.6.13 

MySQL Workbench 6.0.7 Workbench Launch using button in the top panel 

MySQL Utilities 1.3.5 Utilities Scripts are located in /usr/bin 

MySQL Enterprise Backup 3.9.0 MEB Located in /opt/mysql/enterprise/bin/mysqlbackup 

Additionally some processes are running in the background generating some activity in the database. 

 

To login to MySQL: 
Description Shell Workbench 

Using the Unix socket mysql --login-path=socket Socket 

Using TCP/IP mysql --login-path=tcp TCP 

To access the MEM database mysql --login-path=mem MEM 

MySQL Workbench 6.0 is also available – to launch Workbench, click on the button with the Workbench logo 

(with the dolphin) on the panel at the top of the screen. MySQL Workbench has one connection predefined for 

each of the three cases above named Socket, TCP, and MEM respectively. 

 

Databases 
The following databases are available in MySQL: 

Database Description 

information_schema The standard information schema with metadata and some performance related 

data. 

employees The employees sample database. Approximately 160M data in 4 million rows. 

mysql The MySQL system database. 

performance_schema The main database for the MySQL Performance Schema. 

ps_helper Mark Leith’s ps_helper views and procedures for the Performance Schema. 

http://www.markleith.co.uk/ps_helper/ 

https://github.com/MarkLeith/dbahelper  

ps_tools Similar to ps_helper by Jesper Krogh. 

sakila A medium sized sample database with views, stored programs, etc. 

test An empty test database. 

world The standard World sample database. 

  

  

http://www.markleith.co.uk/ps_helper/
https://github.com/MarkLeith/dbahelper


HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 3 

Starting and Stopping MySQL and MySQL Enterprise Monitor 
Both MySQL and MySQL Enterprise Monitor has been started automatically with the VM. However should it 

be necessary to stop, start, or restart either it can be done as follows: 

 

Action Shell 

MySQL – Start sudo service mysql start 

MySQL – Stop sudo service mysql stop 

MySQL – Restart sudo service mysql restart 

  

MEM Dashboard – Start sudo service mysql-monitor-server start 

MEM Dashboard – Stop sudo service mysql-monitor-server stop 

MEM Dashboard – Restart sudo service mysql-monitor-server restart 

  

MEM Dashboard – Start MySQL only sudo service mysql-monitor-server start mysql 

MEM Dashboard – Stop MySQL only sudo service mysql-monitor-server stop mysql 

MEM Dashboard – Restart MySQL only sudo service mysql-monitor-server restart mysql 

  

MEM Dasbboard – Start Tomcat only sudo service mysql-monitor-server start tomcat 

MEM Dashboard – Stop Tomcat only sudo service mysql-monitor-server stop tomcat 

MEM Dashboard – Restart Tomcat only sudo service mysql-monitor-server restart tomcat 

  

MEM Agent – Start sudo service mysql-monitor-agent start 

MEM Agent – Stop sudo service mysql-monitor-agent stop 

MEM Agent – Restart sudo service mysql-monitor-agent restart 

  

Queries – Start sudo service mysql_queries start 

Queries – Stop sudo service mysql_queries stop 

 

Useful resources 
The following resources may be useful during the lab or at home: 

Resource URL 

MySQL 5.7 Reference Manual https://dev.mysql.com/doc/refman/5.7/en/ 

Performance Schema https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html 

Information Schema https://dev.mysql.com/doc/refman/5.7/en/information-schema.html 

Mark Leith’s ps_helper http://www.markleith.co.uk/ps_helper/ 

https://github.com/MarkLeith/dbahelper 

 

See also the reference list at the end of the workbook. 

  

https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema.html
http://www.markleith.co.uk/ps_helper/
https://github.com/MarkLeith/dbahelper


HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 4 

Tour of the MySQL Performance Schema 
Configuration 
We will start out taking a look at how MySQL has been configured with respect to the MySQL Performance 

Schema. 

 

Starting with MySQL 5.6, a subset of the Performance Schema is enabled by default. The MySQL instances on 

the VM are using the default configuration. If you want to enable all consumers and instruments (see later for 

more information on these), you can do it in one of the following ways: 

 

Enable consumers and instruments through /etc/my.cnf 
Add the following options to /etc/my.cnf and restart MySQL: 

 
performance_schema_instrument                              = '%=on' 

performance_schema_consumer_events_stages_current          = ON 

performance_schema_consumer_events_stages_history          = ON 

performance_schema_consumer_events_stages_history_long     = ON 

performance_schema_consumer_events_statements_current      = ON 

performance_schema_consumer_events_statements_history      = ON 

performance_schema_consumer_events_statements_history_long = ON 

performance_schema_consumer_events_waits_current           = ON 

performance_schema_consumer_events_waits_history           = ON 

performance_schema_consumer_events_waits_history_long      = ON 

performance_schema_consumer_global_instrumentation         = ON 

performance_schema_consumer_thread_instrumentation         = ON 

performance_schema_consumer_statements_digest              = ON 

 

The first setting performance_schema_instrument = '%=on' switched on all instruments (% is a 

wildcard that matches all instruments – this can be used similar to a LIKE clause to enable a subset of 

instruments). 

 

For the consumers it is necessary to enable each consumer explicitly. This is done by pre-pending the name of 

the consumer with performance_schema_consumer_, for example to enable the 

statements_digest consumer use the setting 

performance_schema_consumer_statements_digest and set it to ON. 
 

Enable using update statements in the performance_schema database 
All consumers and instruments can be enabled as: 

 
UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'; 

UPDATE performance_schema.setup_instruments SET ENABLED = 'YES', TIMED = 'YES'; 

 

The change will take effect immediately. 

 

Enable using ps_tools 
The ps_tools database includes a stored procedure to enable all consumers and instruments with a single 

statement: 

 
CALL ps_tools.ps_enable_all(); 

 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 5 

Resetting the settings 
To reset all settings (not only consumers and instruments) to the default settings (i.e. not taking /etc/my.cnf into 

consideration): 

 
CALL ps_helper.reset_to_default(FALSE); 

 

Performance Schema Variables 
In addition to the options for which instruments and consumers are enabled at start up, there are a number of 

variables: 

 
mysql> SHOW GLOBAL VARIABLES LIKE 'performance\_schema%'; 

+--------------------------------------------------------+-------+ 

| Variable_name                                          | Value | 

+--------------------------------------------------------+-------+ 

| performance_schema                                     | ON    | 

| performance_schema_accounts_size                       | 100   | 

| performance_schema_digests_size                        | 10000 | 

… 

| performance_schema_setup_actors_size                   | 100   | 

| performance_schema_setup_objects_size                  | 100   | 

| performance_schema_users_size                          | 100   | 

+--------------------------------------------------------+-------+ 

34 rows in set (0.00 sec) 

 

These defines the size of the various Performance Schema tables. Several of the values are automatically 

calculated based on other settings such as max_connections. 

 

As all the Performance Schema data is in-memory, changing the size of the tables affects the memory usage. 

The memory usage of the Performance Schema can be checked with SHOW ENGINE 

PERFORMANCE_SCHEMA STATUS: 

 
mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS; 

+--------------------+------------------------------------------------------+-----------+ 

| Type               | Name                                                 | Status    | 

+--------------------+------------------------------------------------------+-----------+ 

| performance_schema | events_waits_current.size                            | 184       | 

| performance_schema | events_waits_current.count                           | 2412      | 

| performance_schema | events_waits_history.size                            | 184       | 

… 

| performance_schema | memory_summary_by_host_by_event_name.memory          | 1600000   | 

| performance_schema | performance_schema.memory                            | 456413784 | 

+--------------------+------------------------------------------------------+-----------+ 

178 rows in set (0.02 sec) 

 

The last row with Name = performance_schema.memory has the total memory usage for the 

Performance Schema. 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 6 

Setup Tables 
There are five setup tables for the Performance Schema: 

 
mysql> SHOW TABLES LIKE 'setup\_%'; 

+-----------------------------------------+ 

| Tables_in_performance_schema (setup\_%) | 

+-----------------------------------------+ 

| setup_actors                            | 

| setup_consumers                         | 

| setup_instruments                       | 

| setup_objects                           | 

| setup_timers                            | 

+-----------------------------------------+ 

5 rows in set (0.00 sec) 

 

The setup tables include the current settings and allow for dynamic changes of the settings at runtime. 

 

Changes to the setup tables in general takes effect immediately. One exception is changes to setup_actors 

which will only affect new connections. 

 

Note: while it is possible to configure most of the Performance Schema settings dynamically, these changes are 

not persistent when MySQL restarts. 

 

setup_actors 
The setup_actors table controls which user accounts are instrumented by default (see also the threads table 

later). The setup_actors table has the following content by default: 

 
mysql> SELECT * FROM setup_actors; 

+------+------+------+ 

| HOST | USER | ROLE | 

+------+------+------+ 

| %    | %    | %    | 

+------+------+------+ 

1 row in set (0.00 sec) 

 

The HOST and USER fields correspond to the same fields in mysql.user. The ROLE field is currently not 

used. 

 

The rule is that if any row in setup_actors matches the user account, the connection will be instrumented. 

For background threads which do not have a user account, the thread is always instrumented unless turned off in 

the threads table. 

 

setup_objects 
The table setup_objects define which database object will be instrumented. In MySQL 5.6 this can only 

be configured for tables, however in 5.7 events, triggers, functions, and procedures have been added. The 

wildcard '%' is allowed. By default everything is enabled except objects in the mysql, 

performance_schema, and information_schema databases. 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 7 

The default content of the table is: 

 
mysql> SELECT * FROM setup_objects; 

+-------------+--------------------+-------------+---------+-------+ 

| OBJECT_TYPE | OBJECT_SCHEMA      | OBJECT_NAME | ENABLED | TIMED | 

+-------------+--------------------+-------------+---------+-------+ 

| EVENT       | mysql              | %           | NO      | NO    | 

| EVENT       | performance_schema | %           | NO      | NO    | 

| EVENT       | information_schema | %           | NO      | NO    | 

| EVENT       | %                  | %           | YES     | YES   | 

| FUNCTION    | mysql              | %           | NO      | NO    | 

| FUNCTION    | performance_schema | %           | NO      | NO    | 

| FUNCTION    | information_schema | %           | NO      | NO    | 

| FUNCTION    | %                  | %           | YES     | YES   | 

| PROCEDURE   | mysql              | %           | NO      | NO    | 

| PROCEDURE   | performance_schema | %           | NO      | NO    | 

| PROCEDURE   | information_schema | %           | NO      | NO    | 

| PROCEDURE   | %                  | %           | YES     | YES   | 

| TABLE       | mysql              | %           | NO      | NO    | 

| TABLE       | performance_schema | %           | NO      | NO    | 

| TABLE       | information_schema | %           | NO      | NO    | 

| TABLE       | %                  | %           | YES     | YES   | 

| TRIGGER     | mysql              | %           | NO      | NO    | 

| TRIGGER     | performance_schema | %           | NO      | NO    | 

| TRIGGER     | information_schema | %           | NO      | NO    | 

| TRIGGER     | %                  | %           | YES     | YES   | 

+-------------+--------------------+-------------+---------+-------+ 

20 rows in set (0.00 sec) 

 

For setup_objects the most specific match is used. The difference between ENABLED and TIMED is when an 

object is instrumented whether the events are only counted or also timed. 

 

To demonstrate the use of the setup_objects table, consider the following example: 

 
mysql> TRUNCATE table_io_waits_summary_by_table; 

Query OK, 0 rows affected (0.00 sec) 

 

This resets the table_io_waits_summary_by_table table. 

 
mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM 

table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND OBJECT_NAME = 

'Country'; 

Empty set (0.01 sec) 

 

So the table does not have any rows for the world.Country table at this point – just as would be expected just 

after truncating a table. 

 
mysql> SELECT Code, Name, Continent FROM world.Country WHERE NAME = 'United States'; 

+------+---------------+---------------+ 

| Code | Name          | Continent     | 

+------+---------------+---------------+ 

| USA  | United States | North America | 

+------+---------------+---------------+ 

1 row in set (0.00 sec) 

 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 8 

After executing a query using the world.Country table, what does the 

table_io_waits_summary_by_table now show? 

 
mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM 

table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND OBJECT_NAME = 

'Country'; 

+---------------+-------------+------------+----------------+ 

| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT | 

+---------------+-------------+------------+----------------+ 

| world         | Country     |        240 |      963058006 | 

+---------------+-------------+------------+----------------+ 

1 row in set (0.00 sec) 

 

So there are 240 events for the world.Country table now and a total of 963058006 picoseconds (10-12 seconds) 

has been spent using the table. 

 

Now try the same again, but with a rule in the setup_objects table that turns off timing of the events on the 

world.Country table: 

 
mysql> INSERT INTO setup_objects VALUES ('TABLE', 'world', 'Country', 'YES', 'NO'); 

Query OK, 1 row affected (0.00 sec) 

 
mysql> TRUNCATE table_io_waits_summary_by_table; 

Query OK, 0 rows affected (0.00 sec) 

 
mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM 

table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND OBJECT_NAME = 

'Country'; 

+---------------+-------------+------------+----------------+ 

| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT | 

+---------------+-------------+------------+----------------+ 

| world         | Country     |          0 |              0 | 

+---------------+-------------+------------+----------------+ 

1 row in set (0.00 sec) 

 

Now what is that? We just truncated the table_io_waits_summary_by_table table, but there is 

still content in it! For summary tables in the Performance Schema, TRUNCATE does in general not 

delete any of the existing rows; instead the counters are set to 0. This is what happened in this case. 

 
mysql> SELECT Code, Name, Continent FROM world.Country WHERE NAME = 'United States'; 

+------+---------------+---------------+ 

| Code | Name          | Continent     | 

+------+---------------+---------------+ 

| USA  | United States | North America | 

+------+---------------+---------------+ 

1 row in set (0.00 sec) 

 

 

 

 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 9 

mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM 

table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND OBJECT_NAME = 

'Country'; 

+---------------+-------------+------------+----------------+ 

| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT | 

+---------------+-------------+------------+----------------+ 

| world         | Country     |        240 |              0 | 

+---------------+-------------+------------+----------------+ 

1 row in set (0.01 sec) 

 

Here the effect of setting TIMED = 'NO' is that the timer fields (here SUM_TIMER_WAIT) is not 

updated, but we can still see how many times world.Country has been accessed. 

 

Finally we will reset the settings: 

 
mysql> CALL ps_helper.reset_to_default(FALSE); 

Query OK, 0 rows affected (0.00 sec) 

 

setup_timers 
The setup_timers table defines which timer is sued for each of the instrument types: 

 
mysql> SELECT * FROM setup_timers; 

+-----------+-------------+ 

| NAME      | TIMER_NAME  | 

+-----------+-------------+ 

| idle      | MICROSECOND | 

| wait      | CYCLE       | 

| stage     | NANOSECOND  | 

| statement | NANOSECOND  | 

+-----------+-------------+ 

4 rows in set (0.00 sec) 

 

The TIMER_NAME can be set to any of the values available from the performance_timer table: 

 
mysql> SELECT * FROM performance_timers; 

+-------------+-----------------+------------------+----------------+ 

| TIMER_NAME  | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD | 

+-------------+-----------------+------------------+----------------+ 

| CYCLE       |      2277546341 |                1 |          13699 | 

| NANOSECOND  |      1000000000 |                1 |          16107 | 

| MICROSECOND |         1000000 |                1 |          15876 | 

| MILLISECOND |            1038 |                1 |          16347 | 

| TICK        |             103 |                1 |          17443 | 

+-------------+-----------------+------------------+----------------+ 

5 rows in set (0.00 sec) 

 

From the performance_timer table you can also see the timer frequency, resolution, and overhead (in 

number of cycles) using that particular timer. 

 

Note: while CYCLE has the lowest overhead, it is also the least precise as the frequency is not completely 

constant (e.g. the CPU frequency might be changed by the OS depending on the workload). So timers using 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 10 

CYCLE tend to drift a bit compared to other timers. For the measurement of a duration this is generally not a 

problem, but sorting by the start time of the events should be avoided if not all events use the same timer. 

 

setup_instruments 
The setup_instruments table contain one row per instrumentation point in the source code. These are the 

events that can be collected. It is possible to specify both whether an instrument is producing events and if so 

whether it is timed; this is very similar to the setup_objects table: 

 
mysql> SELECT * FROM setup_instruments LIMIT 1; 

+-------------------------------------------+---------+-------+ 

| NAME                                      | ENABLED | TIMED | 

+-------------------------------------------+---------+-------+ 

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_tc | NO      | NO    | 

+-------------------------------------------+---------+-------+ 

1 row in set (0.00 sec) 

 

The name is constructed by components which form a hierarchy: 

 

 Class/Order/Family/Genus/Species 

 

The number of components depends on the Class. The components are separated by '/'. When ENABLED is 

YES, the instrument produces events. TIMED is whether the events are timed or just counted. 

 

The default for which instruments are enabled can be set in the MySQL configuration file using the 

performance_schema_instrument option. 

 

setup_consumers 
The last setup table is setup_consumers which lists the consumers of events from the instruments and 

allows you to specify whether it is enabled or not: 

 
mysql> SELECT * FROM setup_consumers; 

+--------------------------------+---------+ 

| NAME                           | ENABLED | 

+--------------------------------+---------+ 

| events_stages_current          | NO      | 

| events_stages_history          | NO      | 

| events_stages_history_long     | NO      | 

| events_statements_current      | YES     | 

| events_statements_history      | NO      | 

| events_statements_history_long | NO      | 

| events_waits_current           | NO      | 

| events_waits_history           | NO      | 

| events_waits_history_long      | NO      | 

| global_instrumentation         | YES     | 

| thread_instrumentation         | YES     | 

| statements_digest              | YES     | 

+--------------------------------+---------+ 

12 rows in set (0.00 sec) 

 

 

 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 11 

The consumers also form a hierarchy – you can use the ps_setup_tree_consumers procedure in ps_tools to 

generate one from the Linux shell: 

 
[ouser@localhost ~]$ echo -e "$(mysql --login-path=socket -Ee "CALL 

ps_tools.ps_setup_tree_consumers('Text: Left-Right', TRUE)")" 

*************************** 1. row *************************** 

Consumers:  

                        +--statements_digest 

                        |                                                        +--events_stages_history 

                        |                          +--events_stages_current------+ 

global_instrumentation--+                          |                             +--events_stages_history_long 

                        |                          | 

                        |                          |                             +--events_statements_history 

                        +--thread_instrumentation--+--events_statements_current--+ 

                                                   |                             +--events_statements_history_long 

                                                   | 

                                                   |                             +--events_waits_history 

                                                   +--events_waits_current-------+ 

                                                                                 +--events_waits_history_long 

 

Legend: Enabled - Partially enabled - Disabled 

 

The ps_setup_tree_consumers procedure 

takes two arguments: 

 

 The format which can be one of: 

o 'Text: Left-Right' 

o 'Text: Top-Bottom' 

o 'Dot: Left-Right' 

o 'Dot: Top-Bottom' 

 Whether to use color or brackets to indicate 

whether the consumer is effectively enabled. 

 

For a consumer to collect events, it is not enough that 

the consumer itself is enabled; all consumers above it 

in the hierarchy must be enabled as well. The 

ps_setup_tree_consumers procedure takes 

this into account. 

 

As an alternative to the above procedure, the view 

ps_tools.ps_setup_consumers is the 

setup_consumers table with an additional 

column displaying whether the consumer is 

effectively enabled. 

 

The Left-Right and Top-Bottom parts of the formats 

describes the direction of the graph. 

 

The two dot formats can be used to generate for example a PNG or PDF version of the above graph. To create a 

dot formatted output: 

 
mysql --login-path=socket -rBNe "CALL ps_tools.ps_setup_tree_consumers('Dot: Left-Right', TRUE)" > consumers.dot 

 

  

The dot format is graph description language. The 

format is plain text so can be read using any text 

editor. 

 

The VM has been installed with the dot program 

from the graphviz library. This program can be 

used to convert the text based dot formatted file to 

for example PNG images or PDF files: 

 
dot -Tpdf graph.dot -o graph.pdf 

 

or 

 
dot -Tpng graph.dot -o graph.png 

 

Programs that can be used to open the files 

created: 

 

 PDF: evince graph.pdf 

 PNG: eog graph.png 

DOT FILES 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 12 

Instance Tables 
The instance tables include information about the objects being instrumented. They provide event names and 

explanatory notes or status information. The relation to the setup tables is that the instance table has a NAME or 

EVENT_NAME column that corresponds to the NAME column in the setup_instruments table. 

 
mysql> SHOW TABLES LIKE '%\_instances'; 

+---------------------------------------------+ 

| Tables_in_performance_schema (%\_instances) | 

+---------------------------------------------+ 

| cond_instances                              | 

| file_instances                              | 

| mutex_instances                             | 

| rwlock_instances                            | 

| socket_instances                            | 

+---------------------------------------------+ 

5 rows in set (0.00 sec) 

 

Event Tables 
The event tables are the main entry point for looking at the collected data. There are three groups of event tables 

depending on the type of event: 

 

 Stages: The same stages as in the State column of SHOW PROCESSLIST, for example Sending 

data. 

 Statements: The SQL statements that have been run on the server. 

 Waits: Where the server is spending time 

 

Each event has an event name that comes from the corresponding instrument in the setup_instruments 

table, e.g. statement/sql/select for a SELECT statement. 

 

For each event type there are three tables with the actual (raw) data collected: 

 

 %_current: the last event for each thread. Note that in some events are molecular events, so there can 

be more than one current event for one thread. 

 %_history: the last N (around 10 by default) events for each thread. The number of events per thread 

can be configured using the performance_schema_events_%_history_size options. 

 %_history_long: the last M (around 10000 by default) events irrespectively of the thread. The size 

of the tables can be configured with the 

performance_schema_events_%_history_long_size options. 

 

Additionally there are a number of summary tables for each event type. The naming convention for the event 

summary tables is that the table name has two or more parts: 

 

 event_%_summary: specified the event type and it is a summary table. 

 One or more _by_<field>: specifies a field the summary is grouped by. 

 

An example is events_stages_summary_by_account_by_event_name: a summary of stages 

grouped by account and event name. 

 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 13 

Other Summary Tables 
In addition to the event summary tables above, there are also a few other summary tables: 

 

 For objects (currently only tables) 

 For files 

 For table I/O and Lock Wait 

 For sockets 

 For memory usage (5.7.2+ only) 

 

Connection Tables 
There are tables showing the current and total number of connections per user, host, or account (user@host). 

For example for accounts: 

 
mysql> SELECT * FROM accounts; 

+------+-----------+---------------------+-------------------+ 

| USER | HOST      | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS | 

+------+-----------+---------------------+-------------------+ 

| NULL | NULL      |                  18 |                20 | 

| root | localhost |                   1 |                25 | 

+------+-----------+---------------------+-------------------+ 

2 rows in set (0.00 sec) 

 

This shows another aspect of the Performance Schema: note the row having both USER and HOST set to 

NULL. That is for the background threads, so not only can the Performance Schema give information about the 

client connections (foreground threads), it can also give insight into what the internal threads such as the 

InnoDB threads are doing. 

 

Connection Attribute Tables 
Related to the connection tables are two tables giving access to connection attributes: 

 

 session_account_connect_attrs 

 session_connect_attrs 

 
mysql> SELECT * FROM session_connect_attrs; 

+----------------+-----------------+------------+------------------+ 

| PROCESSLIST_ID | ATTR_NAME       | ATTR_VALUE | ORDINAL_POSITION | 

+----------------+-----------------+------------+------------------+ 

|              8 | _os             | Linux      |                0 | 

|              8 | _client_name    | libmysql   |                1 | 

|              8 | _pid            | 7635       |                2 | 

|              8 | _client_version | 5.7.2-m12  |                3 | 

|              8 | _platform       | x86_64     |                4 | 

|              8 | program_name    | mysql      |                5 | 

+----------------+-----------------+------------+------------------+ 

6 rows in set (0.00 sec) 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 14 

The difference between the two tables is that session_connect_attrs includes all the connections 

whereas session_account_connect_attrs only includes the connections for the same account as the 

current user. That is, you can get the content of session_account_connect_attrs from 

session_connect_attrs using the query: 

 
SELECT a.* 

  FROM session_connect_attrs a 

       INNER JOIN threads t USING (PROCESSLIST_ID) 

 WHERE     t.PROCESSLIST_USER = SUBSTRING_INDEX(USER(), '@', 1) 

       AND t.PROCESSLIST_HOST = SUBSTRING_INDEX(USER(), '@', -1); 

 

Threads 
The threads table is one of the most central tables in the Performance Schema. The THREAD_ID is for 

example a "key" for all of the non-summary event tables. 

 

The example below includes both a background thread (THREAD_ID = 16) and a foreground thread 

(THREAD_ID = 27). 

 

Background threads are the ones created by MySQL to handle the internal server activity – in this case it is the 

master InnoDB thread. 

 

Foreground threads are client connections where PROCESSLIST_ID is the same as the Id displayed by SHOW 

PROCESSLIST. The active connection's processlist id can be found using the CONNECTION_ID() function. 

 

The INSTRUMENTED column tells whether the thread is being instrumented. This column is updatable, so for a 

given thread, instrumentation can be enabled and disabled on demand. 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 15 

mysql> SELECT * FROM threads WHERE NAME = 'thread/innodb/srv_master_thread' OR 

PROCESSLIST_ID = CONNECTION_ID()\G 

*************************** 1. row *************************** 

          THREAD_ID: 16 

               NAME: thread/innodb/srv_master_thread 

               TYPE: BACKGROUND 

     PROCESSLIST_ID: NULL 

   PROCESSLIST_USER: NULL 

   PROCESSLIST_HOST: NULL 

     PROCESSLIST_DB: NULL 

PROCESSLIST_COMMAND: NULL 

   PROCESSLIST_TIME: NULL 

  PROCESSLIST_STATE: NULL 

   PROCESSLIST_INFO: NULL 

   PARENT_THREAD_ID: NULL 

               ROLE: NULL 

       INSTRUMENTED: YES 

*************************** 2. row *************************** 

          THREAD_ID: 27 

               NAME: thread/sql/one_connection 

               TYPE: FOREGROUND 

     PROCESSLIST_ID: 8 

   PROCESSLIST_USER: root 

   PROCESSLIST_HOST: localhost 

     PROCESSLIST_DB: performance_schema 

PROCESSLIST_COMMAND: Query 

   PROCESSLIST_TIME: 0 

  PROCESSLIST_STATE: Sending data 

   PROCESSLIST_INFO: SELECT * FROM threads WHERE NAME = 'thread/innodb/srv_master_thread' 

OR PROCESSLIST_ID = CONNECTION_ID() 

   PARENT_THREAD_ID: NULL 

               ROLE: NULL 

       INSTRUMENTED: YES 

2 rows in set (0.00 sec) 

 

Tools to Help with Ad-Hoc Configuration Changes 
As can be seen from the above, there are several tables to keep track of when changing the configuration of the 

Performance Schema. In addition to ps_tools.ps_enable_all() and 

ps_helper.reset_to_default(FALSE) discussed earlier, ps_helper has a few other procedures 

that makes life easier when you need to change the configuration in order to investigate an issue. 

 

 save_current_config() saves the current configuration in a set of temporary tables. 

 reload_saved_config() restores the saved configuration. 

 truncate_all(FALSE) truncates all the events and summary tables. This is important to consider 

to avoid making observations where the settings have changed. The procedure takes one Boolean 

argument which specifies whether the executed statements should be printed or not. 

 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 16 

mysql> CALL ps_helper.save_current_config(); 

Query OK, 19 rows affected (0.00 sec) 

 

mysql> CALL ps_helper.truncate_all(FALSE); 

Query OK, 0 rows affected (0.02 sec) 

 

mysql> -- Perform investigation 

mysql> -- ... 

mysql> -- ... 

mysql> -- ... 

mysql> CALL ps_helper.reload_saved_config(); 

Query OK, 0 rows affected (0.20 sec) 

 

Overview of the Relation Between Tables 
The following diagram shows how the Performance Schema tables relate to each other – summary tables are not 

included: 

 

 
 

 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 17 

Investigating Queries 
The following will look at the options for investigating which queries are executed on the server. The topics are: 

 

 SHOW PROCESSLIST 

 Digests 

 ps_helper views and procedures 

 MySQL Enterprise Monitor (MEM) 3.0 Query Analyzer 

 

In the following it can be an advantage to turn on background queries to general some background queries. The 

queries display a range of queries from simple primary key lookups to badly written queries scanning large 

tables without WHERE clauses as well as queries causing errors. 

 

To enable the queries execute in the Linux shell: 

 
[ouser@localhost ~]$ sudo service mysql_queries start 

Starting MySQL Queries..........                           [  OK  ] 

 

SHOW PROCESSLIST 
Using the Performance Schema to get the equivalent of SHOW PROCESSLIST has several advantages: 

 

 Less locking, so less impact on other queries 

 Possible to get more details 

 Uses regular SELECT statements 

 

The simplest way to get the processlist is to just use the threads table: 

 
mysql> SELECT PROCESSLIST_ID AS Id, PROCESSLIST_USER AS User, PROCESSLIST_HOST AS Host, PROCESSLIST_DB AS db, 

PROCESSLIST_COMMAND as Command, PROCESSLIST_TIME AS Time, PROCESSLIST_STATE AS State, LEFT(PROCESSLIST_INFO, 

100) AS Info FROM threads WHERE PROCESSLIST_ID = CONNECTION_ID()\G 

*************************** 1. row *************************** 

     Id: 16 

   User: root 

   Host: localhost 

     db: performance_schema 

Command: Query 

   Time: 0 

  State: Sending data 

   Info: SELECT PROCESSLIST_ID AS Id, PROCESSLIST_USER AS User, PROCESSLIST_HOST AS Host, PROCESSLIST_DB AS d 

1 row in set (0.18 sec) 

 

This works no matter which consumers and instruments are enabled. 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 18 

However if the consumer events_statements_current is enabled, a much more interesting processlist 

can be obtained by joining on events_statements_current. An example of a new processlist can be 

found in ps_helper.processlist. With the default Performance Schema settings it returns: 

 
mysql> SELECT * FROM ps_helper.processlist WHERE conn_id = CONNECTION_ID()\G 

*************************** 1. row *************************** 

                thd_id: 35 

               conn_id: 16 

                  user: root@localhost 

                    db: performance_schema 

               command: Query 

                 state: Sending data 

                  time: 0 

     current_statement: SELECT * FROM ps_helper.proces ... HERE conn_id = CONNECTION_ID() 

          lock_latency: 195.30 ms 

         rows_examined: 0 

             rows_sent: 0 

         rows_affected: 0 

            tmp_tables: 2 

       tmp_disk_tables: 0 

             full_scan: YES 

        current_memory: 1.41 MiB 

        last_statement: NULL 

last_statement_latency: NULL 

             last_wait: NULL 

     last_wait_latency: NULL 

                source: NULL 

1 row in set (0.26 sec) 

 

To get all available data from ps_helper.processlist the following must be enabled: 

 

 Consumer events_statements_current 

 Consumer events_waits_current 

 Instruments memory/% must be ENABLED 

 

Some things to note about the output: 

 

 The statements, latencies, and the memory usage is formatted. This is done with the ps_helper 

functions: 
o format_statement() 
o format_time() 
o format_bytes() 

 Additionally there is format_path() for file paths (see the section on I/O later). 

 last_statement will be set if the thread is not currently executing a statement. 

 The memory usage is new as of MySQL 5.7.2 

 The rest of the output is also available in MySQL 5.6 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 19 

Statement Digests 
 

Consider the example: 

 
mysql> UPDATE setup_consumers SET ENABLED = 'YES' WHERE NAME = 

'events_statements_history'; 

Query OK, 0 rows affected (0.00 sec) 

Rows matched: 1  Changed: 0  Warnings: 0 

 

mysql> CALL ps_helper.truncate_all(FALSE); 

Query OK, 0 rows affected (0.03 sec) 

 

mysql> SELECT Code, Name FROM world.Country WHERE Code = 'AUS'; 

+------+-----------+ 

| Code | Name      | 

+------+-----------+ 

| AUS  | Australia | 

+------+-----------+ 

1 row in set (0.00 sec) 

 

mysql> SELECT Code, Name FROM world.Country WHERE Code = 'USA'; 

+------+---------------+ 

| Code | Name          | 

+------+---------------+ 

| USA  | United States | 

+------+---------------+ 

1 row in set (0.00 sec) 

 

mysql> SELECT DIGEST, DIGEST_TEXT, SQL_TEXT FROM events_statements_history WHERE SQL_TEXT 

LIKE 'SELECT Code, Name FROM world.Country %' AND THREAD_ID = 

ps_tools.ps_thread_id(NULL)\G 

*************************** 1. row *************************** 

     DIGEST: 192967f1f46a922c0837f0782f28a9cc 

DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?  

   SQL_TEXT: SELECT Code, Name FROM world.Country WHERE Code = 'AUS' 

*************************** 2. row *************************** 

     DIGEST: 192967f1f46a922c0837f0782f28a9cc 

DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?  

   SQL_TEXT: SELECT Code, Name FROM world.Country WHERE Code = 'USA' 

2 rows in set (0.01 sec) 

 

In the last query, ps_tools.ps_thread_id(NULL) is used to get the thread id of the connection. 

 

Note how the DIGEST and DIGEST_TEXT is the same for the two SELECT queries. When the consumer 

statements_digest is enabled (this is the default), the Performance Schema normalizes (creates the 

DIGEST_TEXT) all queries. This process is similar to what mysqldumpslow does when analyzing the Slow 

Query Log. The DIGEST_TEXT is then used to calculate the DIGEST by using md5 sum. 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 20 

The DIGEST is then used to aggregate statistics for similar queries in the 

events_statements_summary_by_digest table: 

 
mysql> SELECT * FROM events_statements_summary_by_digest WHERE DIGEST = 

'192967f1f46a922c0837f0782f28a9cc'\G 

*************************** 1. row *************************** 

                SCHEMA_NAME: performance_schema 

                     DIGEST: 192967f1f46a922c0837f0782f28a9cc 

                DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?  

                 COUNT_STAR: 2 

             SUM_TIMER_WAIT: 678298000 

             MIN_TIMER_WAIT: 310374000 

             AVG_TIMER_WAIT: 339149000 

             MAX_TIMER_WAIT: 367924000 

              SUM_LOCK_TIME: 282000000 

                 SUM_ERRORS: 0 

               SUM_WARNINGS: 0 

          SUM_ROWS_AFFECTED: 0 

              SUM_ROWS_SENT: 2 

          SUM_ROWS_EXAMINED: 2 

SUM_CREATED_TMP_DISK_TABLES: 0 

     SUM_CREATED_TMP_TABLES: 0 

       SUM_SELECT_FULL_JOIN: 0 

 SUM_SELECT_FULL_RANGE_JOIN: 0 

           SUM_SELECT_RANGE: 0 

     SUM_SELECT_RANGE_CHECK: 0 

            SUM_SELECT_SCAN: 0 

      SUM_SORT_MERGE_PASSES: 0 

             SUM_SORT_RANGE: 0 

              SUM_SORT_ROWS: 0 

              SUM_SORT_SCAN: 0 

          SUM_NO_INDEX_USED: 0 

     SUM_NO_GOOD_INDEX_USED: 0 

                 FIRST_SEEN: 2013-09-18 18:58:39 

                  LAST_SEEN: 2013-09-18 18:58:43 

1 row in set (0.00 sec) 

 

ps_helper Views and Procedures 
 

The events_statements_summary_by_digest table is in itself an excellent source of information and 

it is there by default. 

 

However it is also possible to use it as a base for other views. Examples from ps_helper are: 

 

 statement_analysis 

 statements_with_runtimes_in_95th_percentile 

 statements_with_full_table_scans 

 statements_with_sorting 

 statements_with_temp_tables 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 21 

Additionally ps_helper has two procedures that can be used to investigate queries. 

 

dump_thread_stack() 
The procedure dump_thread_stack() will generate  a dot formatted file with the stack trace for one 

thread. The procedure takes the arguments: 

 

 The thread id to investigate 

 The output file – this file must not exist 

 How long to collect data (in seconds) 

 The time between sampling (in seconds) 

 Whether to reset all Performance Schema data before starting the data collection 

 Whether to automatically enable all consumers/instruments and disable other threads – this uses the 

save_current_config() and reload_saved_config() 

 Whether to use debug mode (adds source information) 

 

As an example create two connections. In the connection that should be monitored, get the thread id and enter 

the query to investigate, but do not submit: 

 
mysql> SELECT ps_tools.ps_thread_id(NULL); 

+-----------------------------+ 

| ps_tools.ps_thread_id(NULL) | 

+-----------------------------+ 

|                          23 | 

+-----------------------------+ 

1 row in set (0.00 sec) 

 

mysql> SELECT * FROM world.City WHERE ID = 3805; 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 22 

Start the dump_stread_stack procedure – make sure it runs for long enough to switch to the other 

connection and execute the query while the procedure is in progress: 

 
mysql> CALL ps_helper.dump_thread_stack(23, '/tmp/stack.dot', 20, 0.1, TRUE, TRUE, TRUE); 

+---------------------------------------------+ 

| Info                                        | 

+---------------------------------------------+ 

| Data collection starting for THREAD_ID = 23 | 

+---------------------------------------------+ 

1 row in set (0.03 sec) 

 

+---------------------------------------+ 

| Info                                  | 

+---------------------------------------+ 

| Stack trace written to /tmp/stack.dot | 

+---------------------------------------+ 

1 row in set (20.20 sec) 

 

+-----------------------------------------------+ 

| Convert to PDF                                | 

+-----------------------------------------------+ 

| dot -Tpdf -o /tmp/stack_23.pdf /tmp/stack.dot | 

+-----------------------------------------------+ 

1 row in set (20.20 sec) 

 

+-----------------------------------------------+ 

| Convert to PNG                                | 

+-----------------------------------------------+ 

| dot -Tpng -o /tmp/stack_23.png /tmp/stack.dot | 

+-----------------------------------------------+ 

1 row in set (20.20 sec) 

 

Query OK, 0 rows affected (20.20 sec) 

 

The last two outputs are sample commands to convert the dot formatted output file to a PDF or PNG file 

respectively. See also the sidebar on 'DOT FILES' above. 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 23 

 
 

analyze_statement_digest() 
 

If you have a common query on the server and want to collect information about it, you can use 

analyze_statement_digest() which takes the following parameters: 

 

 The digest to investigate 

 How many seconds to collect data for 

 How often to take a snapshot (in seconds) 

 Whether to truncate the events_statements_history_long and 

events_stages_history_log tables before starting 

 Whether to automatically turn on required consumers 

 

Like dump_thread_stack() the save_current_config() and reload_saved_config() 

procedures are used if the required consumers are automatically turned on. 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 24 

With the mysql_queries running, one often executed query has the digest 

6f4ad8c048e735f01f42121fdd81f3e3: 

 
mysql> CALL ps_helper.analyze_statement_digest('6f4ad8c048e735f01f42121fdd81f3e3', 30, 1.0, TRUE, TRUE); 

+--------------------+ 

| SUMMARY STATISTICS | 

+--------------------+ 

| SUMMARY STATISTICS | 

+--------------------+ 

1 row in set (30.50 sec) 

 

+------------+-----------+-----------+-----------+---------------+---------------+------------+------------+ 

| executions | exec_time | lock_time | rows_sent | rows_affected | rows_examined | tmp_tables | full_scans | 

+------------+-----------+-----------+-----------+---------------+---------------+------------+------------+ 

|         40 | 69.02 ms  | 2.85 ms   |        40 |             0 |          9560 |          0 |         40 | 

+------------+-----------+-----------+-----------+---------------+---------------+------------+------------+ 

1 row in set (30.50 sec) 

 

Empty set (30.50 sec) 

 

+---------------------------+ 

| LONGEST RUNNING STATEMENT | 

+---------------------------+ 

| LONGEST RUNNING STATEMENT | 

+---------------------------+ 

1 row in set (30.50 sec) 

 

+-----------+-----------+-----------+-----------+---------------+---------------+------------+-----------+ 

| thread_id | exec_time | lock_time | rows_sent | rows_affected | rows_examined | tmp_tables | full_scan | 

+-----------+-----------+-----------+-----------+---------------+---------------+------------+-----------+ 

|      1536 | 3.95 ms   | 56.00 us  |         1 |             0 |           239 |          0 |         1 | 

+-----------+-----------+-----------+-----------+---------------+---------------+------------+-----------+ 

1 row in set (30.50 sec) 

 

+----------------------------------------------------+ 

| sql_text                                           | 

+----------------------------------------------------+ 

| SELECT * FROM world.Country WHERE NAME = 'Morocco' | 

+----------------------------------------------------+ 

1 row in set (30.50 sec) 

 

Empty set (30.50 sec) 

 

+----+-------------+---------+------+---------------+------+---------+------+------+-------------+ 

| id | select_type | table   | type | possible_keys | key  | key_len | ref  | rows | Extra       | 

+----+-------------+---------+------+---------------+------+---------+------+------+-------------+ 

|  1 | SIMPLE      | Country | ALL  | NULL          | NULL | NULL    | NULL |  239 | Using where | 

+----+-------------+---------+------+---------------+------+---------+------+------+-------------+ 

1 row in set (31.01 sec) 

 

Query OK, 0 rows affected (31.01 sec) 

 

 

MySQL Enteprise Monitor (MEM) 3.0 Query Analyzer 
 

In MEM 2.3 and earlier, to use the Query Analyzer required it was required to use a proxy or a connector that 

could send the necessary data to the Query Analyzer. 

 

With MEM 3.0 when monitoring MySQL 5.6.14 or later or MySQL 5.7.2 or later, the Query Analyzer can take 

advantage of the Performance Schema to get the data. Even with just the default settings, the 

events_statements_summary_by_digest is enough to get started, although in order to get sample 

queries it is also necessary to keep the history. 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 25 

To use MEM's Query Analyzer launch Firefox from the menu at the top of the screen. The login is: 

 

Username admin 

Password Oracle123 

 

Go to the Query Analyzer tab: 

 

 
 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 26 

Schema, Disk, and Memory 
There are other factors to keep an eye on other than the queries themselves. In this part the topics are: 

 

 The Schema 

 Disk I/O 

 Memory usage – new in MySQL 5.7.2 

 

Schema 
The Performance Schema has several tables with data about the schema. These can be used to find out which 

tables are hotspots, which indexes are missing, and whether there are any indexes that are not used at all? 

ps_helper can again help organizing the data. 

 

Table Statistics 
The schema_table_statistics  and schema_table_statistics_with_buffer gives a 

summary of how much each table is used and the latency involved with the operations. 

schema_table_statistics_with_buffer additionally uses the INNODB_BUFFER_PAGE in the 

Information Schema to determine how much data the table contributes with in the InnoDB Buffer Pool: 

 
mysql> SELECT * FROM ps_helper.schema_table_statistics_with_buffer LIMIT 1\G 

*************************** 1. row *************************** 

              table_schema: employees 

                table_name: salaries 

              rows_fetched: 115624831 

             fetch_latency: 00:14:44.10 

             rows_inserted: 0 

            insert_latency: 0 ps 

              rows_updated: 71974322 

            update_latency: 00:14:54.64 

              rows_deleted: 0 

            delete_latency: 0 ps 

          io_read_requests: 15 

                   io_read: 3.90 KiB 

           io_read_latency: 7.49 ms 

         io_write_requests: 0 

                  io_write: 0 bytes 

          io_write_latency: 0 ps 

          io_misc_requests: 18 

           io_misc_latency: 306.66 us 

   innodb_buffer_allocated: NULL 

        innodb_buffer_data: NULL 

       innodb_buffer_pages: NULL 

innodb_buffer_pages_hashed: NULL 

   innodb_buffer_pages_old: NULL 

 innodb_buffer_rows_cached: NULL 

1 row in set (1.55 sec) 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 27 

This can be related to MEM as well. While from the Information Schema rather than the Performance Schema, 

the content of the InnoDB Buffer Pool is displayed in a graphical fashion in the InnoDB Buffer Pool Usage 

report: 

 

 
 

 

Index Statistics 
To determine the usage of the indexes, the view schema_index_statistics can give an overview: 

 
mysql> SELECT * FROM ps_helper.schema_index_statistics LIMIT 1\G 

*************************** 1. row *************************** 

  table_schema: employees 

    table_name: salaries 

    index_name: PRIMARY 

 rows_selected: 65810773 

select_latency: 00:15:23.52 

 rows_inserted: 0 

insert_latency: 0 ps 

  rows_updated: 1717 

update_latency: 2.75 s 

  rows_deleted: 0 

delete_latency: 0 ps 

1 row in set (0.01 sec) 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 28 

Full Table Scans 
The schema_tables_with_fill_table_scans can be used to locate the tables that are seeing table 

scans: 

 
mysql> SELECT * FROM ps_helper.schema_tables_with_full_table_scans; 

+---------------+-------------+-------------------+ 

| object_schema | object_name | rows_full_scanned | 

+---------------+-------------+-------------------+ 

| employees     | salaries    |         129979175 | 

| world         | City        |          27446160 | 

| employees     | employees   |          10800900 | 

| world         | Country     |           1750560 | 

| sakila        | category    |             21590 | 

| sakila        | staff       |               942 | 

| employees     | departments |               180 | 

+---------------+-------------+-------------------+ 

7 rows in set (0.02 sec) 

 

 

Unused Indexes 
An unused index take up storage and causes overhead as it is still kept up to date. While not all unused indexes 

can be removed – some may be the PRIMARY KEY, others be part of foreign key definitions – it is good to 

keep an eye on which are not used. This can be done with the schema_unused_indexes view: 

 
mysql> SELECT * FROM ps_helper.schema_unused_indexes; 

+---------------+---------------+-----------------------------+ 

| object_schema | object_name   | index_name                  | 

+---------------+---------------+-----------------------------+ 

| employees     | departments   | PRIMARY                     | 

| employees     | departments   | dept_name                   | 

| employees     | dept_emp      | emp_no                      | 

| employees     | dept_emp      | PRIMARY                     | 

| employees     | salaries      | emp_no                      | 

| employees     | titles        | emp_no                      | 

| sakila        | actor         | idx_actor_last_name         | 

| sakila        | address       | idx_fk_city_id              | 

| sakila        | category      | PRIMARY                     | 

| sakila        | city          | idx_fk_country_id           | 

| sakila        | film          | idx_fk_language_id          | 

| sakila        | film          | idx_title                   | 

| sakila        | film          | idx_fk_original_language_id | 

| sakila        | film_actor    | PRIMARY                     | 

| sakila        | film_category | PRIMARY                     | 

| sakila        | film_text     | PRIMARY                     | 

| sakila        | film_text     | idx_title_description       | 

| sakila        | staff         | idx_fk_address_id           | 

| sakila        | staff         | idx_fk_store_id             | 

| sakila        | staff         | PRIMARY                     | 

| world         | Country       | PRIMARY                     | 

+---------------+---------------+-----------------------------+ 

21 rows in set (0.01 sec) 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 29 

Unused Stored Procedures and Functions 
Starting with MySQL 5.7.2 stored functions, procedures, triggers, and events are also instrumented in the 

Performance Schema. This can for example be used to find those functions and procedures that are not used. 

The view schema_unused_routines in ps_tools does that: 

 
mysql> SELECT * FROM ps_tools.schema_unused_routines WHERE object_schema = 'sakila'; 

+---------------+-------------------+-------------+ 

| object_schema | object_name       | object_type | 

+---------------+-------------------+-------------+ 

| sakila        | film_in_stock     | PROCEDURE   | 

| sakila        | film_not_in_stock | PROCEDURE   | 

| sakila        | rewards_report    | PROCEDURE   | 

+---------------+-------------------+-------------+ 

3 rows in set (0.01 sec) 

 

Disk I/O 
The disk – particularly with spinning disks – can quickly become a bottleneck. I/O was among the first to be 

instrumented in the Performance Schema and dates back to MySQL 5.5. Combining the information from this 

section with the previous can for example give hints to whether it is worth moving some data files, the InnoDB 

log files, the binary log, etc. to another disk system 

 

Latest I/O 
The ps_helper view latest_file_io gives an overview of the latest I/O wait events. The view is ever 

changing: 

 
mysql> SELECT * FROM ps_helper.latest_file_io LIMIT 10; 

+------------------------+----------------------------------------+----------+-----------+------------+ 

| thread                 | file                                   | latency  | operation | requested  | 

+------------------------+----------------------------------------+----------+-----------+------------+ 

| io_write_thread:9      | @@datadir/employees/salaries#P#p05.ibd | 3.47 ms  | sync      | NULL       | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 89.52 us | write     | 304.00 KiB | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 3.28 ms  | sync      | NULL       | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 55.70 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 26.87 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 28.29 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 45.10 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 25.39 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 24.05 us | write     | 16.00 KiB  | 

| page_cleaner_thread:18 | @@datadir/ibdata1                      | 45.64 us | write     | 16.00 KiB  | 

+------------------------+----------------------------------------+----------+-----------+------------+ 

10 rows in set (0.21 sec) 

 

mysql> SELECT * FROM ps_helper.latest_file_io LIMIT 10; 

+---------------------------+--------------------------+-----------+-----------+-----------+ 

| thread                    | file                     | latency   | operation | requested | 

+---------------------------+--------------------------+-----------+-----------+-----------+ 

| root@localhost:35030:8774 | @@datadir/ib_logfile1    | 1.70 ms   | write     | 3.94 MiB  | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 181.34 us | create    | NULL      | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYD | 50.92 us  | create    | NULL      | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 24.40 us  | write     | 176 bytes | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 6.20 us   | write     | 100 bytes | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 5.44 us   | write     | 7 bytes   | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 4.97 us   | write     | 7 bytes   | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 5.23 us   | write     | 7 bytes   | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 5.00 us   | write     | 7 bytes   | 

| root@localhost:4138       | @@tmpdir//#sql_acc_0.MYI | 5.20 us   | write     | 7 bytes   | 

+---------------------------+--------------------------+-----------+-----------+-----------+ 

10 rows in set (0.10 sec) 

 

In the first output, it's all InnoDB. A few seconds later, it's almost all MyISAM temporary tables. 



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 30 

 

Note how the file paths uses @@datadir and @@tmpdir – this is the format_path() function in 

ps_helper that makes that substitution. 

 

Thread I/O 
If you need to find out which background thread or connection is causing I/O, you can use the 

io_by_thread_by_latency view: 

 
mysql> SELECT * FROM ps_helper.io_by_thread_by_latency LIMIT 1\G 

*************************** 1. row *************************** 

          user: page_cleaner_thread 

    count_star: 900887 

 total_latency: 00:17:33.14 

   min_latency: 2.91 ns 

   avg_latency: 10.42 ms 

   max_latency: 7.28 s 

     thread_id: 18 

processlist_id: NULL 

1 row in set (0.01 sec) 

 

Global I/O Views 
There are four related views to monitor the global I/O (as : 

 

 io_global_by_file_by_bytes 

 io_global_by_file_by_latency 

 io_global_by_wait_by_bytes 

 io_global_by_wait_by_latency 

 

An example is: 

 
mysql> SELECT * FROM ps_helper.io_global_by_file_by_bytes LIMIT 2\G 

*************************** 1. row *************************** 

         file: @@datadir/ibdata1 

   count_read: 1210 

   total_read: 18.91 MiB 

     avg_read: 16.00 KiB 

  count_write: 491768 

total_written: 20.32 GiB 

    avg_write: 43.33 KiB 

        total: 20.34 GiB 

    write_pct: 99.91 

*************************** 2. row *************************** 

         file: @@datadir/ib_logfile0 

   count_read: 4 

   total_read: 3.50 KiB 

     avg_read: 896 bytes 

  count_write: 6500 

total_written: 7.83 GiB 

    avg_write: 1.23 MiB 

        total: 7.83 GiB 

    write_pct: 100.00 

2 rows in set (0.00 sec)  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 31 

Memory Usage 
New in MySQL 5.7.2 is the instrumentation of memory usage. While not yet complete – particularly InnoDB is 

missing, it can still be used to compare the memory usage of different connections. 

 

It has already been shown how ps_helper.processlist in MySQL 5.7 includes the memory usage. 

 

The raw tables for this are: 

 
mysql> SHOW TABLES LIKE 'memory%'; 

+-----------------------------------------+ 

| Tables_in_performance_schema (memory%)  | 

+-----------------------------------------+ 

| memory_summary_by_account_by_event_name | 

| memory_summary_by_host_by_event_name    | 

| memory_summary_by_thread_by_event_name  | 

| memory_summary_by_user_by_event_name    | 

| memory_summary_global_by_event_name     | 

+-----------------------------------------+ 

5 rows in set (0.00 sec) 

 

Memory instrumentation is disabled by default: 

 
mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'memory/%' LIMIT 10; 

+-----------------------------------------------------+---------+-------+ 

| NAME                                                | ENABLED | TIMED | 

+-----------------------------------------------------+---------+-------+ 

| memory/sql/buffered_logs                            | NO      | NO    | 

| memory/sql/Locked_tables_list::m_locked_tables_root | NO      | NO    | 

| memory/sql/THD::transactions::mem_root              | NO      | NO    | 

| memory/sql/Delegate::memroot                        | NO      | NO    | 

| memory/sql/sql_acl_mem                              | NO      | NO    | 

| memory/sql/sql_acl_memex                            | NO      | NO    | 

| memory/sql/thd::main_mem_root                       | NO      | NO    | 

| memory/sql/help                                     | NO      | NO    | 

| memory/sql/new_frm_mem                              | NO      | NO    | 

| memory/sql/TABLE_SHARE::mem_root                    | NO      | NO    | 

+-----------------------------------------------------+---------+-------+ 

10 rows in set (0.00 sec) 

 

 

  



HOL9733 – Improving Performance with MySQL Performance Schema MySQL Connect 2013 

 
Page | 32 

 

References 
 https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html 

 http://www.markleith.co.uk/ 

 http://www.markleith.co.uk/ps_helper/ 

 https://github.com/MarkLeith/dbahelper 

 http://www.drdobbs.com/database/detailed-profiling-of-sql-activity-in-my/240154959?pgno=1 

 http://mysql.wisborg.dk/ 

 http://mysqlblog.fivefarmers.com/tag/performance_schema/ 

 http://en.wikipedia.org/wiki/DOT_(graph_description_language) 

 http://www.graphviz.org/doc/info/lang.html 

 MySQL Enterprise Monitor 3.0 

o https://dev.mysql.com/doc/mysql-monitor/3.0/en/mem-qanal-using-ui.html 

o https://dev.mysql.com/doc/mysql-monitor/3.0/en/mem-features-qrti.html 

 

https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html
http://www.markleith.co.uk/
http://www.markleith.co.uk/ps_helper/
https://github.com/MarkLeith/dbahelper
http://www.drdobbs.com/database/detailed-profiling-of-sql-activity-in-my/240154959?pgno=1
http://mysql.wisborg.dk/
http://mysqlblog.fivefarmers.com/tag/performance_schema/
http://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/doc/info/lang.html
https://dev.mysql.com/doc/mysql-monitor/3.0/en/mem-qanal-using-ui.html
https://dev.mysql.com/doc/mysql-monitor/3.0/en/mem-features-qrti.html

