
MySQL Users Conf.-1
04-27-2006

MIT Lincoln Laboratory

 Using MySQL
as Active Database

for
Monitoring Applications

Jacob Nikom

MIT Lincoln Laboratory

This work was sponsored by the U.S. Government under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

MIT Lincoln Laboratory
Slide number 2

Outline

• Introduction

• Preventing Monitoring System Architecture

• Building a Rules Engine for an Active Database

• MySQL as an Active Database

• Summary

MIT Lincoln Laboratory
Slide number 3

Outline
• Introduction

– Simple inventory monitoring system

– Inventory monitoring with Active Database (ADBMS)

– Railroad tickets inventory monitoring

– Video monitoring

– Preventive monitoring

– Why use ADBMS instead of applications?

• Preventing Monitoring System Architecture

• Building a Rules Engine for ADBMS

• MySQL as ADBMS

• Summary

MIT Lincoln Laboratory
Slide number 4

Simple Inventory Monitoring System

• Need to poll periodically the database state to detect changes

• High polling rate wastes resources

• Low polling rate reduces responsiveness and accuracy

• Common polling functionality is replicated across many applications

• Difficult to change and maintain features embedded into application code

Inventory
Monitoring
Application

 Taking items out
of the database

Periodically polling
the database

Reordering
new items

Less than 5 items
in Inventory table?

DBMS

Inventory
table

Cause: conventional DBMS does not know that an application is polling it

Rules:
If
less than 5 items in the Inventory table

then
“Order new items”

Monitoring with conventional databases cannot be implemented efficiently!

MIT Lincoln Laboratory
Slide number 5

ADBMS

Inventory
table

Inventory Monitoring with Active DBMS

Rules:
If
less than 5 items in Inventory
table

then
“Order new items”

• If event happened (inventory changed)

• Trigger fires AND

• Condition check happened (Items <= 5)

• If condition is satisfied

• Rules applied AND

• Action executed

Reordering
new items

 Item is taken out
of the database

• An active database is a database in which some operations are
automatically executed once a given situation arises

• An active rule (trigger) is a language construct for defining the system
reaction to the situation

• The situation may correspond to the fact that:
– Some specified events arise
– Specific conditions or state transitions are detected

MIT Lincoln Laboratory
Slide number 6

Active DBMS Monitoring Architecture Analysis

Monitoring architecture improvements due to Active DBMS usage

• Better efficiency

• Less components

• Better integration with other DBMS features

• Better modularity

– Change detection code is isolated from application code

– Uniformity of rules and data interpretation

Knowledge about data changes does not belong to application

Consequence of centralization—knowledge sharing

• One application could be aware about the data changes in another one

• Why one application needs to know about changes in another one?

MIT Lincoln Laboratory
Slide number 7

Railroad Tickets Inventory Monitoring
• There are multiple small local travel offices
• Customers are buying tickets to go to city

Conventional Database
with Tickets Inventory

Travel Agent 1
− Customer 1 wants to buy a ticket

for the train between 9 and 10 AM
− The agent 1 checks and returns “No

ticket for this time”

− Customer N wants to buy a ticket for
the train between 9 and 10 AM

− The agent N checks and returns “No
ticket for this time”

Travel Agent N
− Customer 2 wants to buy a ticket for

the train between 9 and 10 AM
− The agent 2 checks and returns “No

ticket for this time”

Travel Agent 2

One failed request is bad. The group (pattern) of failed requests is really bad!

Hey! Maybe we should increase the number of trains available!

Shared knowledge facilitates non-obvious action

MIT Lincoln Laboratory
Slide number 8

ADBMS Railroad Tickets Inventory Monitoring

Central Station
Active Database

Travel Agent 1

− Receives the latest ticket
inventory state automatically

− Receives the latest ticket
inventory state automatically

Travel Agent N

− Receives the latest ticket
inventory state automatically

Travel Agent 2

• Notifies monitoring applications when inventory changes

• Stores monitoring events in the events table

• Starts event pattern analysis when events table changes

Event Pattern
analysis

Decision
system

Global and local levels of interaction

MIT Lincoln Laboratory
Slide number 9

Video monitoring

• Video monitoring in the UK
– There are 14,000 CCTV cameras in London Underground and 400,000 in London

– Total number of cameras in the UK is 4,000,000 (14 people per camera)

– 24 x 7 video monitoring requires a lot of human resources for tape analysis

– Only an attack justifies the number of people necessary to analyze these tapes

• Questions

– Is video surveillance only useful after an attack?

– Is it possible to identify an attack before it happens?

– Does it require tracking all suspicious individuals at all times?

MIT Lincoln Laboratory
Slide number 10

Preventive Video Monitoring with ADBMS

• Principles
– Don’t track individuals, track the activity
– Activity is an ordered sequence of events
– Suspicious activity is made up of seemingly unsuspicious events
– Only the relations associate those events with particular activity

• Design
– Suspicious activities are well known in advance
– Usually all events that make up the suspicious activity are known
– Participation of the individual in one event is not bad
– Participation of the individual in the suspicious sequence of events is bad

• Implementation
– New events are stored in the ADBMS
– Each event insertion triggers ADBMS to start-up the Rules Engine to scan

all events in search of a pattern
– Rules Engine notifies decision system about patterns found

MIT Lincoln Laboratory
Slide number 11

Why Use ADBMS Instead of Applications?

• Ready available powerful, reliable and flexible ADBMS
framework with little need for additional programming

• Easy shared knowledge between multiple applications

• One implementation enforces uniform, consistent behaviour
for all monitoring applications

• Monitoring events could be described with standard SQL

• ADBMS has full and quick access to all data on the server

• ADBMS has full access to functions and store procedures

MIT Lincoln Laboratory
Slide number 12

Outline
• Introduction

• ADBMS Monitoring System Architecture

– Processing Single Event

– Populating Events Table

– Running Rules Engine

– Full Monitoring System

• Building a Rules Engine for ADBMS

• MySQL as ADBMS

• Summary

MIT Lincoln Laboratory
Slide number 13

Record
Event

Data
Record

Sensor
DataSensor

Sensor table

.

2005-05-17
11:55:12

. . . . 1

2005-05-17
12:55:25

. . . . M

timestampdatarecord_id

Record
Event

 Output
to Events

table

External
Application

1. Sensor inserts data record into Sensor table

2. Sensor table trigger fires and action is executed

3. Trigger firing starts External record analysis application

4. It reads and analyzes the inserted record

5. It creates the event record based on the analysis

Processing Sensor Events
Monitored

Environment

Record
Analysis

MIT Lincoln Laboratory
Slide number 14

Events
table

SensorType,
config, etc.

……

…...

……

eventParams

2005-05-17
11:55:12

Sensor_11

…….Sensor_22

…….…….…….

2005-05-17
11:55:43

Sensor_NN

timestampeventSrcevent_id

Events Table and Rules Engine

Record events
from multiple

sensors

Record
Event

Record
Event

Record
Event

1. Each event record is inserted into Events table
2. Once the record is inserted the Events table trigger fires
3. Trigger firing launches Rules Engine Events table scanning
4. Rules Engines searches for Events pattern in the Events table
5. Once Events pattern found, the message is sent to Decision System

Rules
Engine

Decision
System

MIT Lincoln Laboratory
Slide number 15

SensorTyp
e, config,

etc.

……

…...

……

eventPara
ms

2005-05-
17

11:55:12

Sensor
_1

1

…….Sensor
_2

2

…….…….…….

2005-05-
17

11:55:43

Sensor
_N

N

timestam
p

eventS
rc

event
_id

Running Rules Engine

.

2005-05-17
11:55:12

. . . . 1

2005-05-17
12:55:25

. . . . M

timestampdatarecord_id

Sensor
Data

Data
Record

Record
Event

Record
Event

Record
Event

Monitored
Environment

Record
Event

Record
Event

Record
Event

Rules
Engine

Decision
System

Events
Table

Primitive
Events

Sensor
Table

Events
cloud

Events
stream

Events
pattern

Event
instances

SensorSensorSensor
Record

Analysis

http://images.google.com/imgres?imgurl=http://www.okstate.edu/ucs/Scales%2520of%2520Justice%2520-%2520faculty%2520brochure.jpg&imgrefurl=http://www.okstate.edu/ucs/sco.html&h=150&w=169&sz=5&hl=en&start=4&tbnid=rUYdy4nx7AnWdM:&tbnh=88&tbnw=99&prev=/images%3Fq%3Dscales%2Bof%2Bjustice%26gbv%3D2%26svnum%3D100%26hl%3Den%26sa%3DG

MIT Lincoln Laboratory
Slide number 16

Outline
• Introduction

• Preventing Monitoring System Architecture

• Building a Rules Engine for ADBMS

– Theory of Events

– Primitive Events

– Composite Events

– Composite Event Generation

– Triggers

– Event-Condition-Action (ECA) Rules

• MySQL as ADBMS

• Summary

MIT Lincoln Laboratory
Slide number 17

Theory of Events

• Event form: how an event is represented
– Event could be represented (recorded) as tuple of data components

• Event significance: how an event signifies activity
– Event is a sign of activity. Analysis of events leads to activity understanding

• Event relativity: how an event relates to other events
– Causality: which event caused the event to occur?
– Time: when did the event happen?

• Event aggregation: does the event contain other events
– Primitive events don’t contain other events
– Composite events are built from primitive events

• Event recurrence: do the events belong to the same type
– Event classes
– Event instances

• Event definition (monitoring systems)—recorded environment change
• Event definition (ADBMS)—change in the database state

Event Aspects

MIT Lincoln Laboratory
Slide number 18

Primitive Events

– Data modification: raised on insert, update, or delete

– Data reference: raised on select

– Stored procedure invocation: raised before call, or after return

– Message send/receive: raised on send/receive of message

– Transaction: raised on transaction start, rollback, or commit

– Exception: raised on error (e.g., authorization failure)

– Relative Timer: raised after another specified event

– Absolute Timer: raised at a specified absolute time

– Repetitive Timer: raised periodically (e.g., every hour)

– User-defined: raised by an external application/device or another rule

MIT Lincoln Laboratory
Slide number 19

Composite Events

– Sequence: E=(E1 ; E2) {E2 occurs after E1 (E1.time < E2.time), E.time=E2.time}

– Disjunction: E=(E1 | E2) {E2 occurs after E1 (E1.time < E2.time), E.time=E2.time}

– Conjunction: E=(E1, E2) {E2 occurs after E1 (E1.time < E2.time), E.time=E2.time}

– Negation: ¬E=[E1, E2] {E did not occur within [E1,time < E2.time], E.time=E2.time}

– Periodic: E=P(E1, T, E2) {E occurs every T=[E1.time,E2.time], E.time=E2.time}

– Cumulative periodic: {P* cumulates all occurrences and occurs only one time at E2}

– Aperiodic: E=A(E1, E2, E3) {E occurs when E2 occurs after E1, but before E3}

– Cumulative aperiodic: {A* cumulates all occurrences and occurs only one time at E3}

– ANY operator: ANY (k, E1,...,En) {E occurs when k < n distinct events occur}

Composite events are built from primitive events,
or other composite events using Event Algebra

MIT Lincoln Laboratory
Slide number 20

• Primitive Event consumption policy
– Defines how primitive events are “consumed” by the composite event
– Defines how primitive events are removed from further consideration

• Consumption policy types

– Recent: only the most recent instances of any event {A2 and B} are considered;
older events are discarded

– Chronicle: the oldest instances {A1 and B} are considered and then discarded;
i.e. events are consumed in chronological order

– Continuous: all possible combinations raise separate events; {A1 and B} as
well as {A2 and B}

– Cumulative: all possible combinations of the primitive events are collected into
one event {A1, A2, and B}

Composite Event Generation

A1 A2 B

time

Events: E = {A;B}

MIT Lincoln Laboratory
Slide number 21

Triggers and ECA Rules
• Trigger (active rule) is a language construct for defining the

database reactions

• Defined by using Event-Condition-Action (ECA) rule language

• Active Rule Syntax:

– ON <event> IF <condition> THEN <action>
– If the event arises, the condition is evaluated

– If the condition is satisfied, the action is executed

• Active rules originated from production rules of Artificial Intelligence or
Expert Systems

• AI Production rules are executed for every request

– IF <condition> THEN <action>
– Active rules are executed only in case of events

• Events are recognized by the application or the database (in case of
database event, the database is the application)

MIT Lincoln Laboratory
Slide number 22

Outline
• Introduction

• Preventing Monitoring System Architecture

• Building a Rules Engine for ADBMS

• MySQL as ADBMS
– Triggers

 Trigger syntax
 Event and EventLog tables

– Messaging
 Servers, Daemons, and Applications

– Events
 Event syntax and usage

– User Defined Functions (UDFs)
 UDF Creation and Installation (Linux)

• Summary

MIT Lincoln Laboratory
Slide number 23

MySQL Triggers
Represent a reaction of a database to a change of its state

• MySQL trigger features:
– Primitive event type—insert, delete, update
– Activation time—before, after
– Granularity—for each row
– Transition variables—old, new
– Actions—SQL statements, control flow, procedures, and UDF calls

• What triggers are used for?
– Maintain the data constraints
– Compute (update) materialized derived data
– Maintain consistency across system catalogs or other metadata
– Replicate, migrate, or log data from one table (database) to another
– Manage new types of data (validate input) and keep external repositories consistent with

internal data
– Implement business rules, scheduling, workflow, and other kinds of application

functionality
– Notify users about changes in the database state usually in form of messages

MIT Lincoln Laboratory
Slide number 24

MySQL Triggers (cont.)

Trigger syntax (MySQL version 5.1)
CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
1. Define the trigger:
DELIMITER |
CREATE TRIGGER testref AFTER INSERT ON test1
 FOR EACH ROW BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 END;
|
DELIMITER ;

2. Fire the trigger:
INSERT INTO test1 VALUES (4);

MIT Lincoln Laboratory
Slide number 25

MySQL Messaging

• MySQL Message features:
– Messages are sent by the calls to User Defined Functions from SQL query
– Messages are delivered by the Spread Toolkit
– Messages are sent to the members of message group
– Group members could be applications written in C, PHP, Perl, Java, etc.

• Spread Toolkit
– Open source project developed by Johns Hopkins University
– Backed up by the commercial license from Spread Concepts LLC
– Provides messaging service across local and wide area networks
– Capable to deliver up to 8 MB/sec with 10 K messages/sec
– Support multicast, group communication, and point-to-point message delivery
– Simple API for C and Java, easy to install, use, and maintain

• Implementation
– The UDFs must be linked against the thread-safe Spread library
– The Message APIs require a Spread daemon to be running on each MySQL server
– The Spread daemons must be configured to define the domain for group membership

MySQL servers can send and receive messages across the network
using simple SQL queries

MIT Lincoln Laboratory
Slide number 26

Message Group “order”

Servers, Daemons, and Applications

SELECT send_mesg("orders", byte_array)
• “orders”—message group
• Byte_array—message payload

MySQL Server

Spread Toolkit

Sends
messages Application

API

Spread library

Receives
messages Starts application

Application

MIT Lincoln Laboratory
Slide number 27

MySQL Events
MySQL servers can schedule and execute tasks at specified

time with specified periodicity (temporal triggers)

• Features:

– Temporal triggers are triggered by the passage of time, not the change of database
state

– Scheduled event is essentially a stored procedure with known start time

– Scheduled event is a first class MySQL object with its own table, privilege, and log

– One-time scheduled event—executes one time only

– Recurrent scheduled event—repeats its action at a regular interval

• What ADBMS functionality could those features be used for?

– Absolute Timer: raised at a specified absolute time

– Repetitive Timer: raised periodically

MIT Lincoln Laboratory
Slide number 28

MySQL Events (cont.)

1. Create periodic scheduled event
CREATE EVENT my_event
 ON SCHEDULE
 EVERY 1 WEEK
 DO
 INSERT INTO t VALUES (9);

2. Turn on event_scheduler
SET GLOBAL event_scheduler = 1;

1. Create one-time scheduled event
CREATE EVENT my_event
 ON SCHEDULE

 AT TIMESTAMP '2006-01-20 12:00:00'
 DO
 INSERT INTO t VALUES (0);

2. Turn on event_scheduler
SET GLOBAL event_scheduler = 1;

MySQL Event Syntax:
Alter scheduled event
ALTER EVENT my_event
 ON SCHEDULE
 AT CURRENT_TIMESTAMP
 DO
 INSERT INTO t VALUES (7);

This event fires a trigger NOW

Drop scheduled event
DROP EVENT IF EXISTS my_event

MIT Lincoln Laboratory
Slide number 29

MySQL User Defined Functions (UDF)

• Purpose
– Implement functionality which does not exists in MySQL

– Provide interface to existing libraries

– Increase database performance

• What ADBMS functionality should UDF implement?
– Start up the external program

 External program could be the Rule Engine to generate Composite Events

– Send notification to external programs
 Message API UDFs already implements this functionality using Spread Toolkit

– Efficient Events table scanning in search of Composite Events
 Composite Event generation could be done more efficiently without SQL

MIT Lincoln Laboratory
Slide number 30

UDF Creation and Installation (Linux)
1. Create the file 'so_system.c'
Make sure that "UDFs should have at least one symbol defined in addition to the xxx
symbol that corresponds to the main xxx() function. These auxiliary symbols correspond
to the xxx_init(), xxx_deinit(), xxx_reset(), xxx_clear(), and xxx_add() functions".
2. Compile the file 'so_system.c'
$ gcc -g -c so_system.c
3. Run linker with the file to create shared library
$ gcc -g -shared -W1,-soname,so_system.so.0 -o so_system.so.0.0 so_system.o -lc
4. Copy 'so_system.so.0' file into /usr/lib directory
cp so_system.so.0 /usr/lib
5. Create softlink with shared file to the real file name
ln -s so_system.so.0.0 so_system.so
6. Start up MySQL client
7. Run the MySQL SQL command
mysql> CREATE FUNCTION do_system RETURNS INTEGER soname 'so_system.so';
Query OK, 0 rows affected (0.00 sec)

MIT Lincoln Laboratory
Slide number 31

UDF Creation and Installation (cont.)
8. Verify that the function is installed
The 'mysql.func' table then looks like this (you can also do the update manually):
mysql> select * from mysql.func;
+-----------+-----+--------------+----------+

| name | ret | dl | type |

+-----------+-----+--------------+----------+

| do_system | 2 | so_system.so | function |

+-----------+-----+--------------+----------+

1 row in set (0.00 sec)
9. Call the function with system command
The function can be called like this:
mysql> select do_system('ls > /tmp/test.txt');
+---------------------------------+

| do_system('ls > /tmp/test.txt') |

+---------------------------------+

| -4665733612002344960|

+---------------------------------+

1 row in set (0.02 sec)

MIT Lincoln Laboratory
Slide number 32

Summary

• An active DBMS improves the efficiency of the
 monitoring applications

• Centralized and shared event knowledge between
 applications allows monitoring complex events

• Preventive monitoring could be implemented using
 the theory of events and active databases

• MySQL has all necessary features to be used as an
 active database for preventive monitoring applications

