
Find Query Problems Proactively
with Query Reviews

Presented by:
Sheeri K. Cabral

Database Operations Manager
www.palominodb.com

© 2009/2010 Pythian

 2

Register today!

Don't miss my
3-hour master class:

“Blazingly Fast
MySQL Queries”

© 2009/2010 Pythian

 3

Query Review

• What is it?
– Systematic review of all queries

• Why do it?
– Find queries before they become a problem
– Often a sample query is non-trivial to find

© 2009/2010 Pythian

 4

Query Review

• Who should do it?
– Optimization knowledge

• When and where should it be done?
– dev → test,load test,staging → production

© 2009/2010 Pythian

 5

Main tool

• mk-query-digest
– “query fingerprint”

• Can be used on:
– Slow query logs
– Binary logs
– General query logs

© 2009/2010 Pythian

 6

More mk-query-digest sources

• Direct database querying
– Uses SHOW FULL PROCESSLIST

• pglog (Postgres)
• Parsing tcpdump for traffic:

– MySQL
– memcached
– HTTP

© 2009/2010 Pythian

 7

Getting mk-query-digest

• wget maatkit.org/get/mk-query-digest
– Easiest
– Not always up-to-date!

• http://code.google.com/p/maatkit/
– More work
– You get all the maatkit tools, not just one
– Most up to date

© 2009/2010 Pythian

 8

What is reported on
• Default setup uses --limit 95%:20

– To see all queries, --limit 100%
• No --filter by default
• --filter

● Any attribute at
http://code.google.com/p/maatkit/wiki/EventAttributes

● User, host, database, process id, lock_time,
Memc_miss, Rows_sent, Rows_examined,
Rows_affected, Rows_read, Query_time,
insert_id

http://code.google.com/p/maatkit/wiki/EventAttributes
file:///Users/sheeri/Documents/presentations/mine/

© 2009/2010 Pythian

 9

Other filters

• If using Percona's patches, you can filter on
queries that cause:

– Filesorts, disk filesorts
– Temp tables, Temp disk tables
– Full table scan, full join
– Query cache hit
– and more...

© 2009/2010 Pythian

 10

Output

• Overall summary
• Detailed report of matching queries
• Query Analysis Summary

• Commands run for examples:
perl mk-query-digest --limit 100% \
--review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \
--create-review-table --type genlog genlog127.sql > genlogoutput.txt

perl mk-query-digest --limit 100% \
--review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \
--type binlog binlog325.sql > binlogoutput.txt

© 2009/2010 Pythian

 11

Overall summary (genlog)
229.7s user time, 860ms system time, 94.79M rss, 145.48M vsz

Overall: 906.22k total, 720 unique, 143.84 QPS, 0x concurrency_________

total min max avg 95% stddev median

Exec time 0 0 0 0 0 0 0

Time range 2010-03-12 10:45:01 to 2010-03-12 12:30:01

bytes 242.78M 5 69.06k 280.91 563.87 819.66 112.70

© 2009/2010 Pythian

 12

Overall summary (binlog)
390.2s user time, 1.8s system time, 62.70M rss, 113.45M vsz

Overall: 1.07M total, 252 unique, 245.71 QPS, 5.69Gx concurrency_______

total min max avg 95% stddev median

Exec time 24786256998598s 0 4294967295s 23168970s 992ms 302909074s 0

Time range 2010-04-10 07:14:17 to 2010-04-10 08:26:51

@@session 86 0 1 0.50 0.99 0.50 0.99

@@session 585 1 4 3.42 3.89 0.68 3.89

@@session 3.44k 8 33 20.57 31.70 12.00 31.70

@@session 1.34k 8 8 8 8 0 8

@@session 1 1 1 1 1 0 1

@@session 837.08k 837.08k 837.08k 837.08k 837.08k 0837.08k

@@session 85 0 1 0.50 0.99 0.50 0

bytes 415.05M 5 1.02M 349.05 563.87 1.34k 537.02

error cod 0 0 0 0 0 0 0

© 2009/2010 Pythian

 13

Query analysis part 1 (genlog)
Query 9: 1.69 QPS, 0x concurrency, ID 0x188B27831A9DE05B at byte
268215186

This item is included in the report because it matches --limit.

pct total min max avg 95% stddev median

Count 1 10647

Exec time 0 0 0 0 0 0 0 0

Databases 1 proddb

Time range 2010-03-12 10:45:02 to 2010-03-12 12:30:01

bytes 0 613.45k 59 59 59 59 0 59

© 2009/2010 Pythian

 14

Query analysis part 1 (binlog)
Query 5: 3.90 QPS, 297.34Mx concurrency, ID 0x188B27831A9DE05B at byte
596881917

This item is included in the report because it matches --limit.

pct total min max avg 95% stddev median

Count 1 16829

Exec time 5 1284195222560s 0 4294967295s 76308469s 992ms 546294873s 0

Databases 1 proddb

Time range 2010-04-10 07:14:52 to 2010-04-10 08:26:51

bytes 0 969.38k 58 59 58.98 56.92 0 56.92

error cod 0 0 0 0 0 0 0 0

© 2009/2010 Pythian

 15

Query analysis part 2 (genlog)
Query_time distribution

1us

10us

100us

1ms

10ms

100ms

1s

10s+

Review information

first_seen: 2010-03-12 10:45:02

last_seen: 2010-03-12 12:30:01

reviewed_by:

reviewed_on:

comments:

© 2009/2010 Pythian

 16

Query analysis part 2 (binlog)
Query_time distribution

1us

10us

100us

1ms

10ms

100ms

1s

10s+

Review information

first_seen: 2010-03-12 10:45:02

last_seen: 2010-04-10 08:26:51

reviewed_by:

reviewed_on:

comments:

© 2009/2010 Pythian

 17

Query analysis part 3 (genlog)
Tables

SHOW TABLE STATUS FROM `proddb` LIKE 'colors'\G

SHOW CREATE TABLE `proddb`.`colors`\G

update colors set publishable_flag = true where id = 267354\G

Converted for EXPLAIN

EXPLAIN

select publishable_flag = true from colors where id = 267354\G

© 2009/2010 Pythian

 18

Query analysis part 3 (binlog)
Tables

SHOW TABLE STATUS FROM `proddb` LIKE 'colors'\G

SHOW CREATE TABLE `proddb`.`colors`\G

update colors set publishable_flag = true where id = 284297\G

Converted for EXPLAIN

EXPLAIN

select publishable_flag = true from shopping_events where id =
284297\G

© 2009/2010 Pythian

 19

Query analysis part 1 (binlog)
Query 5: 3.90 QPS, 297.34Mx concurrency, ID 0x188B27831A9DE05B at byte
596881917

This item is included in the report because it matches --limit.

pct total min max avg 95% stddev median

Count 1 16829

Exec time 5 1284195222560s 0 4294967295s 76308469s 992ms 546294873s 0

Databases 1 proddb

Time range 2010-04-10 07:14:52 to 2010-04-10 08:26:51

bytes 0 969.38k 58 59 58.98 56.92 0 56.92

error cod 0 0 0 0 0 0 0 0

update colors set publishable_flag = true where id = 284297\G

© 2009/2010 Pythian

 20

Query Analysis Summary
Profile

Rank Query ID Response time Calls R/Call
Item

==== ================== ======================== ====== ===============

1 0x85FFF5AA78E5FF6A 9856949962471.0000 39.8% 177057 55671054.8720
BEGIN

2 0x8F345B7550CA9147 4664334749763.0000 18.8% 686030 6799024.4592
INSERT user_events_live

3 0xCACEE7C0CF15B39B 2619930057821.0000 10.6% 63756 41093074.5000
UPDATE skus

4 0x308A3C4E761F5834 1378684503375.0000 5.6% 17845 77258868.2194
UPDATE shopping_events

5 0x188B27831A9DE05B 1284195222560.0000 5.2% 16829 76308468.8668
UPDATE colors

6 0xD8F78067CE3F07AB 1279900255360.0000 5.2% 18180 70401554.2002
UPDATE offers

7 0x3C70600B502E3A08 1215475745855.0000 4.9% 16829 72225072.5447
UPDATE products

© 2009/2010 Pythian

 21

The query_review table
• Remember, we did the command:
perl mk-query-digest --limit 100% \
--review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \
--create-review-table --type binlog binlog325.sql > binlogoutput.txt

● What does the query review table look like?

mysql> select * from query_review where checksum=0x188B27831A9DE05B\G
*************************** 1. row ***************************
 checksum: 1768550722713804891
fingerprint: update colors set publishable_flag = true where id = ?
 sample: update colors set publishable_flag = true where id =
100563
 first_seen: 2010-03-12 10:45:02
 last_seen: 2010-04-10 08:26:51
reviewed_by: NULL
reviewed_on: NULL
 comments: NULL
1 row in set (0.00 sec)

© 2009/2010 Pythian

 22

How do we review a query?
• EXPLAIN, SHOW CREATE TABLE, etc.
● Now what?
mysql> update query_review set reviewed_by='Sheeri',
reviewed_on=now(), comments='This query is OK, it uses the primary
key to search on.' where checksum=1768550722713804891;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

● One query down.....
mysql> select count(*) from query_review where reviewed_on is null;
+----------+
| count(*) |
+----------+
| 769 |
+----------+
1 row in set (0.00 sec)

● 769 to go!

© 2009/2010 Pythian

 23

Systematic approach

• You can look at a few queries per day

• Reviewed queries do not appear in subsequent
reports of mk-query-digest

● If you have something in reviewed_by
● Unless you specify --report-all

© 2009/2010 Pythian

 24

Query review

• --no-report to just parse a log to the database:
perl mk-query-digest --limit 100% --no-report –review \
h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \
--type binlog mybinlog.txt

● Can save counts, etc to an historical table
perl mk-query-digest --limit 100% --no-report –review \
h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \
--create-review-history-table –review-history \
h=127.0.0.1,P=3307,D=maatkit,t=qr_history,u=user,p=pass \
--type genlog mygenlog.txt

© 2009/2010 Pythian

 25

Query review history
 mysql> select * from qr_history where checksum=0x188B27831A9DE05B\G

*************************** 1. row ***************************
 checksum: 1768550722713804891
 sample: update colors set publishable_flag = true where id
= 284297
 ts_min: 2010-04-10 07:14:52
 ts_max: 2010-04-10 08:26:51
 ts_cnt: 16829
 Query_time_sum: 1.2842e+12
 Query_time_min: 0
 Query_time_max: 4.29497e+09
 Query_time_pct_95: 0.992137
 Query_time_stddev: 5.46295e+08
 Query_time_median: 0
 Lock_time_sum: NULL
 Lock_time_min: NULL
 Lock_time_max: NULL
 Lock_time_pct_95: NULL
 Lock_time_stddev: NULL
 Lock_time_median: NULL

 Rows_sent_sum: NULL
 Rows_sent_min: NULL
 Rows_sent_max: NULL
 Rows_sent_pct_95: NULL
 Rows_sent_stddev: NULL
 Rows_sent_median: NULL
 Rows_examined_sum: NULL
 Rows_examined_min: NULL
 Rows_examined_max: NULL
Rows_examined_pct_95: NULL
Rows_examined_stddev: NULL
Rows_examined_median: NULL

© 2009/2010 Pythian

 26

Query review history
 mysql> select * from qr_history where checksum=0x188B27831A9DE05B\G

*************************** 1. row ***************************
 checksum: 1768550722713804891
 sample: update colors set publishable_flag = true where id
= 284297
 ts_min: 2010-04-10 07:14:52
 ts_max: 2010-04-10 08:26:51
 ts_cnt: 16829
 Query_time_sum: 1.2842e+12
 Query_time_min: 0
 Query_time_max: 4.29497e+09
 Query_time_pct_95: 0.992137
 Query_time_stddev: 5.46295e+08
 Query_time_median: 0

************* 2. row *************
checksum: 1768550722713804891
sample: update colors set
publishable_flag = true where id =
279850
ts_min: 2010-03-24 10:45:01
ts_max: 2010-03-24 12:30:00
ts_cnt: 7109
Query_time_sum: 0
Query_time_min: 0
Query_time_max: 0
Query_time_pct_95: 0
Query_time_stddev: 0
Query_time_median: 0

© 2009/2010 Pythian

 27

What I'd like to see
• Besides query reviews being common practice...
• More fields in the query_review table

– what index(es) are used – fields, index type
– Tables involved and their approx row count
– Approx rows examined from EXPLAIN

• More fields in the query_review_history table
– Source (genlog, binlog, etc)
– When the review was done

© 2009/2010 Pythian

 28

Start Today!

• Grab a log

• Find a test machine with a database

• Start EXPLAINing all your queries

• mk-query-digest has tons of other great features
other than query reviews.....

09/19/10

01/03/11 1

Find Query Problems Proactively
with Query Reviews

Presented by:
Sheeri K. Cabral

Database Operations Manager
www.palominodb.com

Ie, if a dev finds a problem, he can't always
give you the exact query that's causing the
issue.

© 2009/2010 Pythian 2 2Register today!Don't miss my 3-hour master class: “Blazingly Fast MySQL Queries”

Ie, if a dev finds a problem, he can't always
give you the exact query that's causing the
issue.

© 2009/2010 Pythian 3 3Query Review• What is it?–Systematic review of all queries• Why do it?–Find queries before they become a problem –Often a sample query is non-trivial to find

Whoever is responsible for the query review
should have a working knowledge of query
and schema optimization.

In an ideal world, you'd have the rule “no
query gets put into production without
having a qualified person EXPLAIN it first”
and think of all the ramifications of if/when
the table gets bigger.

It should probably be done in testing or
staging – definitely before the code is
released into the wild, although looking at
the production queries every once in a while
is a good idea too, if you can manage it,
because you may find that some actions are
more popular than you planned!

© 2009/2010 Pythian 4 4Query Review• Who should do it?–Optimization knowledge• When and where should it be done?–dev → test,load test,staging → production

© 2009/2010 Pythian 5 5Main tool• mk-query-digest–“query fingerprint”• Can be used on:–Slow query logs–Binary logs–General query logs

© 2009/2010 Pythian 6 6More mk-query-digest sources • Direct database querying–Uses SHOW FULL PROCESSLIST • pglog (Postgres)• Parsing tcpdump for traffic:–MySQL –memcached –HTTP

© 2009/2010 Pythian 7 7Getting mk-query-digest • wget maatkit.org/get/mk-query-digest –Easiest–Not always up-to-date! • http://code.google.com/p/maatkit/ –More work–You get all the maatkit tools, not just one–Most up to date

--limit specifies the queries to show; you can put in a
percentage or a number, or both separated by a colon. If
you do both, it will pick whichever comes first. This is the
top % of worst queries to show, or the top N worst
queries to show. So by default it shows you the top 95%
worst queries.

You can also filter by keywords in the query, like SELECT
or a certain table.

So this tool is very useful to filter out only queries that had
certain attributes – maybe you wan to to look at all
queries that examined over X amount of rows. Maybe
you want to see what memcached is missing, or find
queries that are locked for long periods of time.
Obviously this tool is VERY powerful!!!

© 2009/2010 Pythian 8 8What is reported on• Default setup uses --limit 95%:20 –To see all queries, --limit 100%• No --filter by default• --filter●Any attribute at http://code.google.com/p/maatkit/wiki/EventAttributes ●User, host, database, process id, lock_time, Memc_miss, Rows_sent, Rows_examined, Rows_affected, Rows_read, Query_time, insert_id

© 2009/2010 Pythian 9 9Other filters• If using Percona's patches, you can filter on queries that cause:–Filesorts, disk filesorts–Temp tables, Temp disk tables–Full table scan, full join–Query cache hit–and more...

I'm showing both the binlog and the genlog
because the genlog doesn't show times and
often times are important. Of course if your
system has different resources like CPU
speed and available RAM, then the times
may be completely different. But doing this
type of analysis on a load testing server is a
great way to find potentially bad queries,
and/or to get lots of queries.

I do suggest, if you can, using the general log
for completeness' sake. You could also set
the slow query log to a very low threshold to
get more completeness for a query review.

If you can't see this text, move closer now.

© 2009/2010 Pythian 10 10Output• Overall summary• Detailed report of matching queries • Query Analysis Summary• Commands run for examples: perl mk-query-digest --limit 100% \ --review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \ --create-review-table --type genlog genlog127.sql > genlogoutput.txt perl mk-query-digest --limit 100% \--review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \ --type binlog binlog325.sql > binlogoutput.txt

This particular output is from using –limit 100%, using a 256 Mb
general log file from a production machine.

There is no introductory line, or a line stating what the report was
called with, which would be nice (ie, --limit 100%)

The first 2 fields are the time it took to parse the data. The last 2
fields on the first line are how much memory it used to parse.

Rss = size of resident, non-swapped memory
Vsz = memory usage of entire process incl. RSS

Then we have how many queries, how many unique queries, the
query per second processing time and the concurrency. This
used the general log, which doesn't have times, so those
aggregates aren't shown, and neither is concurrency

Note that bytes is the size of the file I parsed. Those aggregates
are working fine.

© 2009/2010 Pythian 11 11Overall summary (genlog) # 229.7s user time, 860ms system time, 94.79M rss, 145.48M vsz # Overall: 906.22k total, 720 unique, 143.84 QPS, 0x concurrency_________# total min max avg 95% stddev median# Exec time 0 0 0 0 0 0 0# Time range 2010-03-12 10:45:01 to 2010-03-12 12:30:01 # bytes 242.78M 5 69.06k 280.91 563.87 819.66 112.70

This particular output is from using –limit 100%, using a 256 Mb
general log file from a production machine.

There is no introductory line, or a line stating what the report was
called with, which would be nice (ie, --limit 100%)

The first 2 fields are the time it took to parse the data. The last 2
fields on the first line are how much memory it used to parse.

Rss = size of resident, non-swapped memory
Vsz = memory usage of entire process incl. RSS

Then we have how many queries, how many unique queries, the
query per second processing time and the concurrency. This
used the general log, which doesn't have times, so those
aggregates aren't shown.

Note that bytes is the size of the file I parsed. Those aggregates
are working fine.

© 2009/2010 Pythian 12 12Overall summary (binlog) # 390.2s user time, 1.8s system time, 62.70M rss, 113.45M vsz# Overall: 1.07M total, 252 unique, 245.71 QPS, 5.69Gx concurrency_______ # total min max avg 95% stddev median# Exec time 24786256998598s 0 4294967295s 23168970s 992ms 302909074s 0 # Time range 2010-04-10 07:14:17 to 2010-04-10 08:26:51 # @@session 86 0 1 0.50 0.99 0.50 0.99# @@session 585 1 4 3.42 3.89 0.68 3.89# @@session 3.44k 8 33 20.57 31.70 12.00 31.70# @@session 1.34k 8 8 8 8 0 8# @@session 1 1 1 1 1 0 1# @@session 837.08k 837.08k 837.08k 837.08k 837.08k 0837.08k # @@session 85 0 1 0.50 0.99 0.50 0# bytes 415.05M 5 1.02M 349.05 563.87 1.34k 537.02# error cod 0 0 0 0 0 0 0

This is just the first part of the detailed query
analysis...

Pct is % of queries that are this fingerprint
Total is count of queries that are this

fingerprint

Again, no times in the general log.
© 2009/2010 Pythian 13 13Query analysis part 1 (genlog)# Query 9: 1.69 QPS, 0x concurrency, ID 0x188B27831A9DE05B at byte 268215186# This item is included in the report because it matches --limit.# pct total min max avg 95% stddev median# Count 1 10647# Exec time 0 0 0 0 0 0 0 0# Databases 1 proddb# Time range 2010-03-12 10:45:02 to 2010-03-12 12:30:01 # bytes 0 613.45k 59 59 59 59 0 59

Same first part analysis of the same query,
from the binlog. Different bytes b/c
different time.

© 2009/2010 Pythian 14 14Query analysis part 1 (binlog)# Query 5: 3.90 QPS, 297.34Mx concurrency, ID 0x188B27831A9DE05B at byte 596881917# This item is included in the report because it matches --limit.# pct total min max avg 95% stddev median# Count 1 16829# Exec time 5 1284195222560s 0 4294967295s 76308469s 992ms 546294873s 0 # Databases 1 proddb# Time range 2010-04-10 07:14:52 to 2010-04-10 08:26:51 # bytes 0 969.38k 58 59 58.98 56.92 0 56.92# error cod 0 0 0 0 0 0 0 0

2nd part of the detailed analysis is the query
time distribution and review information.
Obviously for the general log, this is very
boring.

Note that the review information comes from
the database we specified with the --review
command. This shows what it looks like
after the first run – the dates are
automatically put in using the timestamps in
the log.

If we hadn't put –review this 2nd part would
just have the query time distributions

© 2009/2010 Pythian 15 15Query analysis part 2 (genlog)# Query_time distribution# 1us# 10us# 100us# 1ms# 10ms# 100ms# 1s# 10s+# Review information# first_seen: 2010-03-12 10:45:02# last_seen: 2010-03-12 12:30:01# reviewed_by: # reviewed_on: # comments:

The time analysis. One thing you could do is
set the slow query log to log almost
everything, and then you'd have a time
analysis. Of course to be proactive you'd
want to do this on staging, or even testing,
so that the query can be changed to be
optimal even before you get to production.© 2009/2010 Pythian 16 16Query analysis part 2 (binlog)# Query_time distribution# 1us# 10us# 100us# 1ms# 10ms# 100ms# 1s ## # 10s+ ################# Review information# first_seen: 2010-03-12 10:45:02# last_seen: 2010-04-10 08:26:51# reviewed_by: # reviewed_on: # comments:

Finally we get to some table information, and
the query itself.

The binlog is the same.

© 2009/2010 Pythian 17 17Query analysis part 3 (genlog)# Tables# SHOW TABLE STATUS FROM ̀proddb̀ LIKE 'colors'\G# SHOW CREATE TABLE ̀proddb̀.̀colors̀\G update colors set publishable_flag = true where id = 267354\G# Converted for EXPLAIN# EXPLAINselect publishable_flag = true from colors where id = 267354\G

© 2009/2010 Pythian 18 18Query analysis part 3 (binlog)# Tables# SHOW TABLE STATUS FROM ̀proddb̀ LIKE 'colors'\G# SHOW CREATE TABLE ̀proddb̀.̀colors̀\G update colors set publishable_flag = true where id = 284297\G# Converted for EXPLAIN# EXPLAINselect publishable_flag = true from shopping_events where id = 284297\G

Now, let's look at the query again, in context.

That's a long time to be executing for a simple update
statement. It's actually a bug in MySQL, which has
been reported and confirmed.

© 2009/2010 Pythian 19 19Query analysis part 1 (binlog)# Query 5: 3.90 QPS, 297.34Mx concurrency, ID 0x188B27831A9DE05B at byte 596881917# This item is included in the report because it matches --limit.# pct total min max avg 95% stddev median# Count 1 16829# Exec time 5 1284195222560s 0 4294967295s 76308469s 992ms 546294873s 0 # Databases 1 proddb# Time range 2010-04-10 07:14:52 to 2010-04-10 08:26:51 # bytes 0 969.38k 58 59 58.98 56.92 0 56.92# error cod 0 0 0 0 0 0 0 0update colors set publishable_flag = true where id = 284297\G

As you can see the summary is also useful.
You can order by other items, by the way,
the default is to order by most count.

© 2009/2010 Pythian 20 20Query Analysis Summary # Profile# Rank Query ID Response time Calls R/Call Item# ==== ================== ======================== ====== =============== # 1 0x85FFF5AA78E5FF6A 9856949962471.0000 39.8% 177057 55671054.8720 BEGIN# 2 0x8F345B7550CA9147 4664334749763.0000 18.8% 686030 6799024.4592 INSERT user_events_live# 3 0xCACEE7C0CF15B39B 2619930057821.0000 10.6% 63756 41093074.5000 UPDATE skus# 4 0x308A3C4E761F5834 1378684503375.0000 5.6% 17845 77258868.2194 UPDATE shopping_events# 5 0x188B27831A9DE05B 1284195222560.0000 5.2% 16829 76308468.8668 UPDATE colors# 6 0xD8F78067CE3F07AB 1279900255360.0000 5.2% 18180 70401554.2002 UPDATE offers# 7 0x3C70600B502E3A08 1215475745855.0000 4.9% 16829 72225072.5447 UPDATE products

I showed you the report so that I could show
you this – the query review table doesn't
have any of the aggregate information (but
you can save it, we'll see that later). Just
the query itself, and whether or not it has
been reviewed.

© 2009/2010 Pythian 21 21The query_review table • Remember, we did the command: perl mk-query-digest --limit 100% \--review h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \ --create-review-table --type binlog binlog325.sql > binlogoutput.txt ●What does the query review table look like?mysql> select * from query_review where checksum=0x188B27831A9DE05B\G *************************** 1. row *************************** checksum: 1768550722713804891fingerprint: update colors set publishable_flag = true where id = ? sample: update colors set publishable_flag = true where id = 100563 first_seen: 2010-03-12 10:45:02 last_seen: 2010-04-10 08:26:51reviewed_by: NULLreviewed_on: NULL comments: NULL1 row in set (0.00 sec)

See the blazingly fast SQL 3-hour master
class at Kscope to learn how to do this, also
to get optimization tips.

© 2009/2010 Pythian 22 22How do we review a query? • EXPLAIN, SHOW CREATE TABLE, etc.●Now what?mysql> update query_review set reviewed_by='Sheeri', reviewed_on=now(), comments='This query is OK, it uses the primary key to search on.' where checksum=1768550722713804891; Query OK, 1 row affected (0.00 sec)Rows matched: 1 Changed: 1 Warnings: 0 ●One query down.....mysql> select count(*) from query_review where reviewed_on is null; +----------+| count(*) |+----------+| 769 | +----------+1 row in set (0.00 sec)●769 to go!

© 2009/2010 Pythian 23 23Systematic approach• You can look at a few queries per day • Reviewed queries do not appear in subsequent reports of mk-query-digest●If you have something in reviewed_by ●Unless you specify --report-all

So if you've reviewed all queries in the top 10
and you ask for the top 10, you won't see
anything in the output.

You can cheat by not putting anything in
reviewed by, just put reviewed on and the
comments. You will see the reviewed_on
and comments if you do that.

© 2009/2010 Pythian 24 24Query review • --no-report to just parse a log to the database:perl mk-query-digest --limit 100% --no-report –review \ h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \ --type binlog mybinlog.txt●Can save counts, etc to an historical table perl mk-query-digest --limit 100% --no-report –review \ h=127.0.0.1,P=3307,D=maatkit,t=query_review,u=user,p=pass \ --create-review-history-table –review-history \ h=127.0.0.1,P=3307,D=maatkit,t=qr_history,u=user,p=pass \ --type genlog mygenlog.txt

This is 1 row, the next slide will show the non-
null from both rows....

© 2009/2010 Pythian 25 25Query review history mysql> select * from qr_history where checksum=0x188B27831A9DE05B\G*************************** 1. row *************************** checksum: 1768550722713804891 sample: update colors set publishable_flag = true where id = 284297 ts_min: 2010-04-10 07:14:52 ts_max: 2010-04-10 08:26:51 ts_cnt: 16829 Query_time_sum: 1.2842e+12 Query_time_min: 0 Query_time_max: 4.29497e+09 Query_time_pct_95: 0.992137 Query_time_stddev: 5.46295e+08 Query_time_median: 0 Lock_time_sum: NULL Lock_time_min: NULL Lock_time_max: NULL Lock_time_pct_95: NULL Lock_time_stddev: NULL Lock_time_median: NULL Rows_sent_sum: NULL Rows_sent_min: NULL Rows_sent_max: NULL Rows_sent_pct_95: NULL Rows_sent_stddev: NULL Rows_sent_median: NULL Rows_examined_sum: NULL Rows_examined_min: NULL Rows_examined_max: NULLRows_examined_pct_95: NULLRows_examined_stddev: NULLRows_examined_median: NULL

Non-null from both runs

© 2009/2010 Pythian 26 26Query review history mysql> select * from qr_history where checksum=0x188B27831A9DE05B\G*************************** 1. row *************************** checksum: 1768550722713804891 sample: update colors set publishable_flag = true where id = 284297 ts_min: 2010-04-10 07:14:52 ts_max: 2010-04-10 08:26:51 ts_cnt: 16829 Query_time_sum: 1.2842e+12 Query_time_min: 0 Query_time_max: 4.29497e+09 Query_time_pct_95: 0.992137 Query_time_stddev: 5.46295e+08 Query_time_median: 0************* 2. row *************checksum: 1768550722713804891sample: update colors set publishable_flag = true where id = 279850ts_min: 2010-03-24 10:45:01ts_max: 2010-03-24 12:30:00ts_cnt: 7109Query_time_sum: 0Query_time_min: 0Query_time_max: 0Query_time_pct_95: 0Query_time_stddev: 0Query_time_median: 0

Fields and index types – fields in the indexes,
and whether they're primary/unique or not.

Tables involved and row count – you could
query information_schema to find queries
that maybe you should re-review now that a
table is much bigger. Also if you're
considering adding an index you could
easily come up with all the queries that use
that table.

© 2009/2010 Pythian 27 27What I'd like to see• Besides query reviews being common practice...• More fields in the query_review table –what index(es) are used – fields, index type–Tables involved and their approx row count–Approx rows examined from EXPLAIN • More fields in the query_review_history table –Source (genlog, binlog, etc)–When the review was done

© 2009/2010 Pythian 28 28Start Today!• Grab a log• Find a test machine with a database • Start EXPLAINing all your queries • mk-query-digest has tons of other great features other than query reviews.....

