
A MySQL Practitioner‟s Journey to
Understanding and Using NoSQL

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Alex Esterkin

Boston MySQL Meetup – June 14, 2010

Who needs NoSQL? Why use something that simplistic?

The Cassandra Syndrome
◦ Wikipedia: “… a term applied in situations in which valid warnings or

concerns are dismissed or disbelieved”

The case for joining You Know Who (Project Voldemort)

NoSQL is not simple: the CAP theorem, NoSQL techniques

Adapting MySQL for NoSQL DB as its persistent store

Configuring/Tuning MySQL for NoSQL query workload

Experimenting with MySQL schema and table design

Taking on Cassandra: use MySQL for range searches, etc.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Who needs NoSQL? Why use something that simplistic?

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Massive data volumes necessitate massive sharding.

 Extreme query concurrency far exceeding RDMS limits

 When processing an SQL query, it is not feasible

◦ To move data between partitions on multi-gigabyte scale;

◦ To assemble or aggregate results from hundreds of shards.

 ACID transactions do not scale in MPP, cause latency

 Global transaction management is almost impossible

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Web Social Networking is naturally partitioned:

◦ Each user “bakes” in his/her own data.

◦ Query footprint = 1 shard

 No joins needed

 No subqueries needed

 Clients own the data

 Complex values:

◦ Protocol buffers

◦ JSON Objects

 ACID not required

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 NoSQL: is it “No SQL” or is it “Not only SQL”? We‟ll see.

 Partitions are little “soldiers” responding to a simple API

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

The Cassandra Syndrome

◦ Wikipedia: “a term applied in situations in which valid warnings or concerns
are dismissed or disbelieved”

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Moderated by Dr. John Busch, CTO of Schooner Information Technology

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Facebook uses MySQL for searches (not as a NoSQL DB)

 A Year ago, Twitter and Digg still happily used
MySQL+Memcashed sharded clusters

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Facebook still uses MySQL for searches, but Cassandra
evolves and grows.

 This year, Twitter and Digg converted to Cassandra

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

◦

◦

The case for joining You Know Who (Project Voldemort)

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Data models and query APIs in NoSQL databases:

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud

 Of the listed databases, only Cassandra and Voldemort can
scale to petabytes.

 Cassandra:

◦ Borrowed ideas from Oracle, Big Table, and Amazon Dynamo

◦ Not a Key-Value store;

◦ Cassandra‟s “column families” and “supercolumns” look very
similar to “Nested Tables” in Model 204;

◦ There is no place for MySQL in Cassandra.

 Voldemort:

◦ Built on the concepts described in Amazon Dynamo paper;

◦ Developed and used by LinkedIn;

◦ Based on unconfirmed leaks, is used at Apple.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud

 Millions use LinkedIn for professional networking.

 LinkedIn developed a distributed key-value database based on the
principles described in the Amazon Dynamo paper.

 LinkedIn donated it to open source in 2009 as Project Voldemort.

 Voldemort has pluggable persistent store architecture that
supports BerkeleyDB, MySQL, and other data sources.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jay Kreps (LinkedIn and Project Voldemort)

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

NoSQL is not simple: the CAP theorem, NoSQL techniques

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

• First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

• Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

• First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

• Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

• Regarded as proved by MIT Prof. Nancy Lynch
and Seth Gilbert in 2002

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

© 2010 Alex Esterkin

Presented at SOSP‟07 October 14-17, 2007, Stevenson, WA, USA

Boston MySQL Meetup - 2010-06-14

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Source: Verner Vogels, Amazon

 Key domain is partitioned using consistent hashing:
hash(key) = shard_id

 Each server node is a “master node” for several partitions

 Partitions don‟t change, partition ownership can change

 Calculate “master” partition for a key

 Allocate shards in a way that nodes appear in different places
on the hash ring

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14
Source: Jay Kreps (LinkedIn and Project Voldemort)

 Parameters: Replication factor N, # of blocking reads R, # of
blocking writes W

 Replicated copies are on different nodes

 R+W>N allows for quorum resolution

 Preference list: Next N adjacent partitions
in the ring belonging to different nodes

N-R-W

 Thus, “5-3-3” configuration means

◦ 5 replicated requests to insert, read, update, or delete key-values

◦ A quorum of 3 request results is needed for success

◦ Reads and writes both tolerate 2 simultaneous node failures

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Leslie Lamport (1978). "Time, clocks, and the ordering of events in a
distributed system". Communications of the ACM 21 (7): 558–565

 Wikipedia->Lamport Timestamps:

◦ In a distributed system, it is difficult to synchronize time across entities within the system;

◦ Use the concept of a logical clock based on events through which they communicate.

◦ If two entities do not exchange any messages, then they probably do not need to share a
common clock; events occurring on those entities are termed as concurrent events.

◦ On the same local machine we can order the events based on the local clock of the system.

◦ When two entities communicate by message passing, then the send event is said to 'happen
before' the receive event, and the logical order can be established among the events.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Wikipedia->Vector Clock

◦ Vector clocks is an algorithm for generating a partial ordering of events in a
distributed system and detecting causality violations.

◦ The vector clocks algorithm was independently developed by Colin Fidge and
Friedemann Mattern in 1988

 [Jay Kreps (LinkedIn and Project Voldemort)]

◦ In Voldemort, a vector clock is a tuple {t1 , t2 , ..., tn } of counters

 Each value update has a master node; when data is written with
master node i, it increments ti.

 All the replicas will receive the same version

 Allows for consistency resolution between writes on multiple replicas

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 In failure or stress scenarios (e.g., network partition), multiple
concurrent versions of a value may exist simultaneously.

 Concurrent versions can occur when updates to the same key
happen on different nodes in the system.

 Inconsistency Resolution is the process of merging concurrent
versions into a single unified value for the client.

 A simple example of Inconsistency Resolution is "last one
wins“ -the version with the most recent timestamp is kept.

 Eventual consistency may be achieved using Read Repair …

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Read Repair is a technique for pushing missed updates to nodes using a lazy
consistency protocol (also known as Optimistic replication)

 When a key is accessed, the version of the value retrieved from each node is
compared.

 Any server that does not have the latest value is updated with the newer value.

 Read repair is used to make the nodes in the cluster eventually consistent.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Adapting MySQL for NoSQL DB as its persistent store

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Data is organized into “STORES”; typically a “STORE” is a DB table

 Six operations:

◦ PUT (Key, Value)

◦ PUT_IF_ABSENT(Key, Value)

◦ GET (Key)

◦ GETALL(Keys)

◦ DELETE (Key, Version)

◦ TRUNCATE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Each store is backed by an initialized “Storage Engine”

 On the server side, “Value” becomes a “Versioned” Value – comprised
of a Vector Clock (Version) and an actual Value

 Storage Engine API:

◦ PUT(Key, Versioned Value) – same as PUT(Key, Version, Value)

◦ PUT_IF_ABSENT(Key, Versioned Value) – same as
PUT_IF_ABSENT(Key, Version, Value)

◦ GET (Key)

◦ GETALL({Keys})

◦ DELETE (Key, Version)

◦ TRUNCATE()

◦ CLOSE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Each record must include KEY, VERSION, and VALUE

 Voldemort uses binary type KEYs

 VERSION needs to be a binary type, as it is a complex variable length structure
that needs to be serialized

 VALUE is a binary large object

 (KEY, VERSION) tuples are either unique or primary key

 If the storage engine stores BLOBs as files, then too many files and too many
full cycle I/O operations – better to incorporate in DB file format

 No need for global transaction management

 No need for XA transactions

 Perhaps, no need for nested transactions? It depends (will discuss later)

 No need for table locking in case of a transactional MySQL storage engine –
fully delegate transaction management to the Engine

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Completely different SQL query processing focus:

◦ Trivial queries against a single table, no joins, no subqueries, only one
WHERE clause predicate – a lookup by a key or a primary key

◦ The queries are always the same, but the query result sets are never reused

◦ Result sets typically consist of a single record

◦ Every record contains a BLOB

 Standard performance tuning recommendations are only
partially valid

◦ For example, with no complex query processing on a thread, you can
benefit by configuring MySQL to use significantly more threads

 Standard benchmark used for tuning are not quite applicable
to a key-value persistence store

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The answer is YES:

◦ InnoDB is transactional, with full support for transactions

◦ Row level locking

◦ MVCC

◦ Extensive and reliable crash recovery features

◦ You can configure it to use a file per table

◦ BLOBs are accommodated very efficiently within the file format

◦ Generally concurrent transaction oriented and very tunable

◦ InnoDB Plug-in with Google performance fixes handles massive
concurrency levels

◦ The entire record is stored on one page

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The following diagram is from „09 MySQL Conference InnoDB presentation by
Heikki Tuuri and Calvin Sun; also featured in the MySQL University InnoDB
internals talk by Calvin Sun

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

See online InnoDB Plug-in Documentation:

 http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html

 http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

 Question: what storage format is more efficient? COMPACT? DYNAMIC?
Antelope? Barracuda?

 It is more important to minimize the number I/O operations (entire record fits
on one page) than to optimize index based query processing operations

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

 Putting a global private cloud based storage system in production

◦ Totally different from a stateless service

◦ Totally different from single server/cluster or even grid based systems

◦ Backup and restore

◦ Upgrades

◦ Monitoring, provisioning, de-provisioning

◦ Capacity planning

 Performance tuning

◦ Performance is deceitfully high when data is in RAM

◦ Need realistic tests: production-like systems, clusters, data, and load

 Operational advantages

◦ No single point of failure

◦ Predictable SLAs

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Configuring/Tuning MySQL for NoSQL query workload

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Sample settings that definitely make sense:

cachePrepStmts=true

cacheResultSetMetadata=true

prepStmtCacheSize=1024

useServerPrepStmts=true

cacheServerConfiguration=true

useLocalSessionState=true

enableQueryTimeouts=false

elideSetAutoCommits=true

alwaysSendSetIsolation=false

tcpKeepAlive=true

tcpTrafficClass=24

autoReconnect=true

autoReconnectForPools=true (To preserve server side PreparedStatements)

maxReconnects= 216000 (Reconnects are attempted every 2 seconds)

allowMultiQueries=true

maxAllowedPacket=134217728 (Ability to store values up to 128M in size)

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

skip-external-locking

skip-locking

innodb_support_xa = false

This is almost a no-brainer:

 External locking makes no sense, as we:

 use eventual consistency mechanisms,

 employ only InnoDB storage engine,

 don‟t use global transaction manager

 Regular table locking can also be turned off:

 we only use statement level transactions

 since InnoDB provides row level locking and MVCC

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Arguably, binary logging is not needed, as in case of server crash, we can rely
on eventual consistency mechanisms, such as read repair, for data recovery

 Arguments in favor of turning OFF binary logging:

◦ Much better INSERT, REPLACE, and UPDATE performance in terms of throughput

◦ In our tests, throughput (# requests per second) we have seen 2-3X difference

 Arguments in favor of turning ON binary logging:

◦ Absolutely required to provide “point in time” recovery

◦ In case of InnoDB file corruption, restoring from backup results in stale data, eventual
consistency mechanisms might take too long to close the gap

◦ In case of high update/insert/delete request volume or percentage, the shards
containing most recent record replicas may become single points of failure

◦ Binary logging tangibly increases the probability that InnoDB may automatically
recover after a server crash

 A valid question to ask: Which of two options will provide better performance:

◦ Configure Voldemort cluster replication as 3-2-2 AND turn binary logging ON

◦ Configure Voldemort cluster replication as 5-3-3 AND turn binary logging OFF (in this
case, there will be no shard level single points of failure

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The default transaction isolation level may be set to one of the following
levels: READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ,
SERIALIZABLE

 As we rely on Eventual Consistency, we can set this to the lowest level
possible

 Binary Logging necessitates at least READ-COMMITTED

 Therefore:

◦ If Binary Logging is turned OFF, then use

transaction_isolation = READ-UNCOMMITTED

◦ If Binary Logging is turned ON, then use

transaction_isolation = READ-COMMITTED

 In either case, transactional consistency guarantees can be weakened:

innodb_flush_log_at_trx_commit = 0

◦ If set to 1, InnoDB will flush transaction logs to the disk at each commit, provide full ACID
behavior

◦ Value 0 means that the log is only written to the log file and the log file flushed to disk
approximately once per second

◦ Value 2 means the log is written to the log file at each commit, but the log file is only
flushed to disk approximately once per second

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

thread_cache_size

 The minimum rational setting is the number of NIO channels plus 2.

 Performance should improve with higher settings, e.g., 4x (# of NIO channels)

thread_concurrency

 It makes sense to set it higher than thread_cache_size, as, presumably,
threads spend much time sleeping while InnoDB does the nutty-gritty work

max_connections

 Always set this to a high enough number – up to 1000 or more

wait_timeout = 432000 (This is a sample setting)

 The shown setting allows for client auto-reconnecting for up to 120 hours.

 This server side setting corresponds to maxReconnects MySQL Connector/J
setting on the JDBC client side.

 The JDBC client tries to reconnect every 2 seconds (this time slice is not

configurable). We need 1800 reconnect attempts to last us through one hour.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

innodb_thread_concurrency

◦ Number of threads allowed inside the InnoDB kernel. Arguably, this value
should be greater than thread_pool_size

◦ Although the documentation states that too high value may lead to thread
thrashing, on a system with 8 cores, 64 seems to be a good number to try

innodb_write_io_threads=16 or maybe even higher

innodb_read_io_threads=4 or 8

◦ In case of a key-value database, there is no value in pre-fetching data,
hence, we don‟t need too many read threads

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 On a hardware server with 16GB of main memory, try setting
innodb_buffer_pool_size = 10240M

 The following memory is allocated by MySQL per thread and is completely
wasted in our case, therefore, we should use the lowest settings:

◦ join_buffer_size – use the lowest allowable value, as we have no joins to
process

◦ key_buffer_size – use the lowest allowable value, as we have no MyISAM
indices

◦ read_buffer_size – set to a low value, e.g., 1M, as we do not scan MyISAM
tables

◦ read_rnd_buffer_size – set to a low value, e.g., 1M, as we do not read
MyISAM sorts

◦ bulk_insert_buffer_size = 0M – we do not insert data into MyISAM tables

◦ myisam_sort_buffer_size and myisam_max_sort_buffer_size – set to the
lowest values

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

[mysqld_safe]

nice = -20

malloc-lib = tcmalloc

 Try giving MySQL higher priority on a dedicated hardware server

◦ Pitfalls: May deadlock MySQL server or even crash the hardware server if MySQL
settings are too aggressive

◦ May make performance worse, unless Voldemort JVM is given same priority

 Thread-Caching Malloc library – one of Google performance fixes

◦ Pitfalls: Makes a difference only when the number of threads is fairly low or when the
value BLOBs are large

◦ With BLOB values and very high concurrency of requests, configuring InnoDB with a lot
of threads and not using tcmalloc library might provide better performance results

[mysqld]

memlock

 Instructs MySQL to use the memlock() function call to keep MySQL process locked
in memory and to avoid potential swapping out in case of high memory pressure.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Experimenting with MySQL schema and table design

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Project Voldemort uses Apache License

 Want to roll up sleeves? Here are some ideas.

◦ Improve the existing MySQL persistent store implementation
or come up with a better one (a JDBC application):

 Rewrite connection pooling (the build-in version uses a simple
org.apache.commons.dhcp.BasicDataSource based pooling design).

 Make a more efficient use of prepared statements.

◦ Experiment with SQL schema, table, and transaction design:

 Use a different PRIMARY KEY, e.g., an AUTO_INCREMENT field.

 Add extra fields to speed up queries, e.g., for searching by “key_”.

 Replace transaction blocks with Java tricks.

 Exotic idea: put each shard in a separate table.

◦

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Connection pool variants from Apache Commons DBCP

◦ A lot of locking and blocking

◦ Multi-level “DELEGATE” pattern causes data copying, inevitably too many
try-catch blocks, lacking PreparedStatement reuse, difficult to configure.

 Alternatives:

ThreadLocal wrapper containing a JDBC Connection container object

◦ In each instance of a MySQL pluggable persistence store object, allocate a
ThreadLocal container object that wraps around a java.sql.Connection.

◦ There will be one JDBC Connection container per Java NIO thread

◦ Create, prepare and save as class variables all the necessary PreparedStatement
objects; reuse these Connections and Prepared Statements

Develop own implementation of connection pooling

◦ Make sure prepared statements are really reused and not closed unnecessarily

◦ Take advantage of Connector/J features

◦ Make everything non-blocking and non-locking as much as possible

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 A ThreadLocal wrapped JDBC Connection container works the fastest

 However, it assumes that all processing is done “inline” on the respecting NIO
thread and that NIO threads block on DB access without spawning new threads

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The built-in MySQL persistence store uses the following table definition:

create table mysql

(key_ varbinary(200) not null,

version_ varbinary(200) not null,

value_ blob,

primary key(key_, version_)

) engine = InnoDB

 PUT operations: AUTOCOMMIT is off, each transaction blocks contains

◦ A SELECT by key_ to see if this might be in fact an UPDATE or a read-repair

◦ Iterate over the Result Set, DELETE records with verifiably earlier version_ field values

◦ INSERT a new record

◦ COMMIT or ROLLBACK

 Index operations are slow because of PK width

 Slow DELETEs of individual records while iterating result sets

 Maximum size of BLOB values: 65535 bytes

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Idea: why not store each shard in a separate MySQL table
<shard_prefix>_<shard_id>

 “Table per shard” positives:

◦ Better I/O parallelism, lower disk contention, could use more I/O threads in InnoDB.

◦ More granular backup, restore, easier to migrate shards to another node as part of
Voldemort cluster rebalancing

◦ Smaller database file corruption footprint, should there be file corruption after a crash

 “Table per shard” negatives:

◦ All pooled connections have to process database requests against all tables.

◦ At least times (number of shards per node) more Prepared Statements.

◦ Everything is a federation, single administrative commands do not suffice any more.

◦ For example, in order to drop all tables in a cluster with 32 shards and a common
Voldemort table prefix “voldemort”.

for i in `seq 0 32`; do echo "drop table voldemort$i" | mysql –ujason; done

◦ Same applies to TRUNCATE, BACKUP, etc.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Taking on Cassandra: use MySQL for range searches, etc.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Cassandra is not only a key-value store:

◦ Supports “subkeys”

◦ Allows range searches (by using order-preserving partitioners).

 Idea: develop such features in Voldemort using MySQL means:

◦ Add necessary extra MySQL fields and indices.

◦ Design and contribute corresponding Voldemort API extensions.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Adding new features to a NoSQL database
will be easy when a full-featured RDBMS

is used for data persistence!

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Questions?

Alex Esterkin

aesterkin@gmail.com

 Presently, Database Technologist at Nokia.

 Prior to this, Chief Architect at Infobright.

 Developed other database server products:

 Postgres-derived MPP database server grid at Dataupia;

 SybaseIQ analytical DW server ant Expressway Technologies/Sybase.

 SQL features of Model204 at CCA.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

