NoSQL + MySQL

A MySQL Practitioner’s Journey to
Understanding and Using NoSQL

Boston MySQL Meetup - June 14, 2010

. Alex Esterkin

A MySQL PractitionEigSyoUiiiEyae
Understanding anciUSIRCRNGS@]

Who needs NoSQL? W

The Cassandra Syndrc

- Wikipedia: “... a term app
concerns are dismissed o

The case for joining You
NoSQL is not simple: the
Adapting MySQL for NoSQL DB
Configuring/Tuning MySQL for NoSQ
Experimenting with MySQL schema and table design

T(king on Cassandra: use MySQL for range searches, etc.

R\
) A\
L\ \ \

©2010 Alex -y Boston MySQL Meetup - 2010-06-14

RRRRR GRG0

A MySQL Practit
Understanding

Who needs NoSQL:

Boston MySQL Meetup - 2010-06-14

The Root Causes of NoSQL

Massive data volumes necessitate massive sharding.
Extreme query concurrency far exceeding RDMS limits

When processing an SQL query, it is not feasible
To move data between partitions on multi-gigabyte scale;
To assemble or aggregate results from hundreds of shards.

ACID transactions do not scale in MPP, cause latency
Global transaction management is almost impossible

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

What Makes NoSQL Work

» Web Social Networking is naturally partitioned:
- Each user “bakes” in his/her own data.
- Query footprint = 1 shard

zZ Z
© O
—
c O
o >
O wn
c
o 3
=
™ o
S)
S O
)
)
O
)
O

Clients own the data

Complex values:

- Protocol buffers
> JSON Objects
ACID not required

v

v

v

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

The Essense of NoSQL

» NoSQL: is it “No SQL” or is it “Not only SQL"? We’ll see.
» Partitions are little “soldiers” responding to a simple API

{;/, T WY AR IR

\CAsA SAe

4% &8 48 da

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Pra
Understanding

The Cassandra Syn

> Wikipedia: “a term ap
are dismissed or disbe

Boston MySQL Meetup - 2010-06-14

Panel Discussion at the 2010 MySQL Conference:
“MySQL or NoSQL...That is the Question”

Moderated by Dr. John Busch, CTO of Schooner Information Technology

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

The Role of MySQL: Good Old News

» Facebook uses MySQL for searches (not as a NoSQL DB)

» A Year ago, Twitter and Digg still happily used
MySQL+Memcashed sharded clusters

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

MySQL in Retreat: Bad Recent News

» Facebook still uses MySQL for searches, but Cassandra
evolves and grows.

» This year TW|tter and D|gg _converted to Cassandra

(SE Sl e

.'.{

%W%%%%%W

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

The case for joining Y

Boston MySQL Meetup - 2010-06-14

Any Hope for MySQL to Play a Role in the
NoSQL Universe?

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Many Very Different NoSQL Databases Exist

» Data models and query APIs in NoSQL databases:

IS T e —

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud
© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Massively Scalable NoSQL Databases are
Conceptual Rooted in Dynamo or BigTable

Of the listed databases, only Cassandra and Voldemort can
scale to petabytes.

Cassandra:
Borrowed ideas from Oracle, Big Table, and Amazon Dynamo
Not a Key-Value store;

Cassandra’s “column families” and “supercolumns” look very
similar to “Nested Tables” in Model 204;

There is no place for MySQL in Cassandra.
Voldemort:
Built on the concepts described in Amazon Dynamo paper;
Developed and used by LinkedIn;
Based on unconfirmed leaks, is used at Apple.

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud
© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Any Hope for MySQL to Play a Role in the
NoSQL Universe? - Yes: Project Voldemort

Millions use LinkedIn for professional networking.

LinkedIn developed a distributed key-value database based on the
principles described in the Amazon Dynamo paper.

LinkedIn donated it to open source in 2009 as Project Voldemort.

Voldemort has pluggable persistent store architecture that
supports BerkeleyDB, MySQL, and other data sources.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Voldemort Architecture with Pluggable
Storadge Enaines

n A (%
Client API
Conflict Resolution
Serialization
ReQUGSts Responses —
(= 7
ROUtIEE flopair Network Client & Server
(HTTP/Sockets/NIO)
(Optional)
Faiover (Hinted handoff)

Y

o

Storage Engine
v . (BDB/MySQL/Memory)
—

Source: Jay Kreps (LinkedIn and Project Voldemort)

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

NoSQL is not simple: t

Boston MySQL Meetup - 2010-06-14

The Consistency/Availability/Partition Tolerance Theorem

 First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

« Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

Towards Robust
Distributed Systems

Dr. Eric A. Brewer

Professor, UC Berkeley

Co-Founder & Chief Scientist, Inktomi

© 2010 Alex Esterkin

PODC Keynote, July 19, 2000

The CAP Theorem

Tolerance to network

artitions

Theorem: You can have at
most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Boston MySQL Meetup - 2010-06-14

The Consistency/Availability/Partition Tolerance Theorem

 First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

« Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

The CAP Theorem

Towards Robust
Distributed Systems

Dr. Eric A. Brewer

Professor, UC Berkeley
Co-Founder & Chief Scientist, Inktomi

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web e

Services « Regarded as proved by MIT Prof. Nancy Lynch
Seth Gilbert® Nomey Lyneh* and Seth Gilbert in 2002

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Background: Amazon Dynamo

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

Presented at SOSP’07 October 14-17, 2007, Stevenson, WA, USA

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

© 2010 Alex Esterkin

Techniques Used in Amazon Dynamo

Table 1: Summary of techniques used in Dymnamo and

their advantages.

Problem Technique Advantage
Parfitioning Consistent Hashing Incremental
Scalability
High Avwvailability Vector clocks with

for writes

reconciliation during
reads

Version size 1s
decoupled from
update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and
durability guarantee
when some of the
replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
information.

Source: Verner Vogels, Amazon

Boston MySQL Meetup - 2010-06-14

Project Voldemort’s Interpretation: Partitioning

Key domain is partitioned using consistent hashing:
hash(key) = shard_id

Each server node is a “master node” for several partitions
Partitions don’t change, partition ownership can change

Calculate “master” partition for a key
Allocate shards in a way that nodes appear in different places

on the hash ring

© 2010 Alex Esterkin

Hash Ring

[A, C, B]

(8,0.C]
Source: Jay Kreps (LinkedIn and Project Voldemort)

Boston MySQL Meetup - 2010-06-14

Project Voldemort’s Interpretation: Partitioning

Parameters: Replication factor N, # of blocking reads R, # of
blocking writes W

Replicated copies are on different nodes
R+W>N allows for quorum resolution

Preference list: Next N adjacent partitions
in the ring belonging to different nodes

N-R-W
Thus, “5-3-3” configuration means
5 replicated requests to insert, read, update, or delete key-values
A quorum of 3 request results is needed for success
Reads and writes both tolerate 2 simultaneous node failures

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Entiry Time Ordering in Distributed Systems

Leslie Lamport (1978). "Time, clocks, and the ordering of events in a
distributed system". Communications of the ACM 21 (7). 558-565

Wikipedia->Lamport Timestamps:
In a distributed system, it is difficult to synchronize time across entities within the system;
Use the concept of a logical clock based on events through which they communicate.

If two entities do not exchange any messages, then they probably do not need to share a
common clock; events occurring on those entities are termed as concurrent events.

On the same local machine we can order the events based on the local clock of the system.

When two entities communicate by message passing, then the send event is said to 'happen
before' the receive event, and the logical order can be established among the events.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Project Voldemort’s Interpretation: Use Vector
Clocks for Versioning

Wikipedia->Vector Clock

Vector clocks is an algorithm for generating a partial ordering of events in a
distributed system and detecting causality violations.

The vector clocks algorithm was independently developed by Colin Fidge and
Friedemann Mattern in 1988

Jay Kreps (Linkedln and Project Voldemort)]
In Voldemort, a vector clock is a tuple {t1, t2, ..., tn } of counters

Each value update has a master node; when data is written with
master node i, it increments ti.

All the replicas will receive the same version
Allows for consistency resolution between writes on multiple replicas

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Concurrent Versions and Inconsistency
Resolution

In failure or stress scenarios (e.g., network partition), multiple
concurrent versions of a value may exist simultaneously.

Concurrent versions can occur when updates to the same key
happen on different nodes in the system.

Inconsistency Resolution is the process of merging concurrent
versions into a single unified value for the client.

A simple example of Inconsistency Resolution is "last one
wins“ —-the version with the most recent timestamp is kept.

Eventual consistency may be achieved using Read Repair ...

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Inconsistency Resolution Technique: Read

Repair

Read Repair is a technique for pushing missed updates to nodes using a lazy
consistency protocol (also known as Optimistic replication)

When a key is accessed, the version of the value retrieved from each node is

compared.

Any server that does not have the latest value is updated with the newer value.
Read repair is used to make the nodes in the cluster eventually consistent.

Tuple from Node 1

KEY=1

VER=2

BAR

Tuple from Node 2

_Iﬁ_com e | KEY=1
Versions

VER=1 FOO
Tuple from Node 3
KEY=1 VER=2 BAR

KEY=1 VER=2 BAR

Repair Node 2

' GET
GET

h PUT - Repair >
|

' GET

© 2010 Alex Esterkin

Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

Adapting MySQL for NoSQL

Boston MySQL Meetup - 2010-06-14

Client API

Data is organized into “STORES”; typically a “STORE” is a DB table
Six operations:

PUT (Key, Value)

PUT_IF_ABSENT(Key, Value)

GET (Key)

GETALL(Keys)

DELETE (Key, Version)

TRUNCATE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Storage Engine API

Each store is backed by an initialized “Storage Engine”

On the server side, “Value” becomes a “Versioned” Value - comprised
of a Vector Clock (Version) and an actual Value

Storage Engine API:
PUT(Key, Versioned Value) - same as PUT(Key, Version, Value)

PUT_IF_ABSENT(Key, Versioned Value) - same as
PUT_IF_ABSENT(Key, Version, Value)

GET (Key)
GETALL({Keys})
DELETE (Key, Version)
TRUNCATE()

CLOSE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

What Does This All Mean for a MySQL Store?

Each record must include KEY, VERSION, and VALUE
Voldemort uses binary type KEYs

VERSION needs to be a binary type, as it is a complex variable length structure
that needs to be serialized

VALUE is a binary large object
(KEY, VERSION) tuples are either unique or primary key

If the storage engine stores BLOBs as files, then too many files and too many
full cycle 1/0 operations - better to incorporate in DB file format

No need for global transaction management
No need for XA transactions
Perhaps, no need for nested transactions? It depends (will discuss later)

No need for table locking in case of a transactional MySQL storage engine -
fully delegate transaction management to the Engine

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

MySQL as a Persistent Store for Key-
Value Records

Completely different SQL query processing focus:

Trivial queries against a single table, no joins, no subqueries, only one
WHERE clause predicate - a lookup by a key or a primary key

The queries are always the same, but the query result sets are never reused
Result sets typically consist of a single record
Every record contains a BLOB

Standard performance tuning recommendations are only
partially valid

For example, with no complex query processing on a thread, you can
benefit by configuring MySQL to use significantly more threads

Standard benchmark used for tuning are not quite applicable
to a key-value persistence store

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Is InnoDB MySQL Engine Suitable for This?

The answer is YES:
InnoDB is transactional, with full support for transactions
Row level locking
MVCC
Extensive and reliable crash recovery features
You can configure it to use a file per table
BLOBs are accommodated very efficiently within the file format
Generally concurrent transaction oriented and very tunable

InnoDB Plug-in with Google performance fixes handles massive
concurrency levels

The entire record is stored on one page

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

InnoDB Page / Physical Storage Organization

The following diagram is from ‘09 MySQL Conference InnoDB presentation by
Heikki Tuuri and Calvin Sun; also featured in the MySQL University InnoDB
internals talk by Calvin Sun

Tablespace
| Segment
| Extent Extent
Leaf node segment
Non-leaf node segment Extent Extent
“Extent
Rollback segment '—F D D D D D D D D
Page \OJOO00O0O0O0O
@ ————r'lnnnnooon
Row RN R RRR
| Trx id | [Row |lRow! lRowl|/ | LI LTI
| Roll pointer |/ A HENNEEn.
| Field pointers | Row|| Row HiENEEEEE
Field 1|| Field 2| |Field n HiN|N .

an extent = 64 pages

INNOBASE

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

InnoDB Record Storage Formats

See online InnoDB Plug-in Documentation:

» http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html

» http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

» Question: what storage format is more efficient? COMPACT? DYNAMIC?
Antelope? Barracuda?

» It is more important to minimize the number |/O operations (entire record fits
on one page) than to optimize index based query processing operations

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

Production Challenges for NoSQL Databases

Putting a global private cloud based storage system in production
Totally different from a stateless service

Totally different from single server/cluster or even grid based systems
Backup and restore

Upgrades
Monitoring, provisioning, de-provisioning
Capacity planning
Performance tuning
Performance is deceitfully high when data is in RAM

Need realistic tests: production-like systems, clusters, data, and load
Operational advantages

No single point of failure

Predictable SLAs

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

Configuring/Tuning MySQL for

Boston MySQL Meetup - 2010-06-14

Tuning Connector/J JDBC Connections for
Voldemort

Sample settings that definitely make sense:

cachePrepStmts=true

cacheResultSetMetadata=true

prepStmtCacheSize=1024

useServerPrepStmts=true

cacheServerConfiguration=true

uselLocalSessionState=true

enableQueryTimeouts=false

elideSetAutoCommits=true

alwaysSendSetlsolation=false

tcpKeepAlive=true

tcpTrafficClass=24

autoReconnect=true

autoReconnectForPools=true (To preserve server side PreparedStatements)
maxReconnects= 216000 (Reconnects are attempted every 2 seconds)
allowMultiQueries=true

maxAllowedPacket=134217728 (Ability to store values up to 128M in size)

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Turn Off MySQL Table Locking and XA
Support

skip-external-locking
skip-locking
innodb_support_xa = false

This is almost a no-brainer:

External locking makes no sense, as we:
use eventual consistency mechanisms,
employ only InnoDB storage engine,
don’t use global transaction manager
Regular table locking can also be turned off:
we only use statement level transactions

since InnoDB provides row level locking and MVCC

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Do We Really Need Binary Logging?
Arguably, binary logging is not needed, as in case of server crash, we can rely
on eventual consistency mechanisms, such as read repair, for data recovery
Arguments in favor of turning OFF binary logging:

Much better INSERT, REPLACE, and UPDATE performance in terms of throughput

In our tests, throughput (# requests per second) we have seen 2-3X difference
Arguments in favor of turning ON binary logging:

Absolutely required to provide “point in time” recovery

In case of InnoDB file corruption, restoring from backup results in stale data, eventual
consistency mechanisms might take too long to close the gap

In case of high update/insert/delete request volume or percentage, the shards
containing most recent record replicas may become single points of failure

Binary logging tangibly increases the probability that InnoDB may automatically
recover after a server crash

A valid question to ask: Which of two options will provide better performance:
Configure Voldemort cluster replication as 3-2-2 AND turn binary logging ON

Configure Voldemort cluster replication as 5-3-3 AND turn binary logging OFF (in this
case, there will be no shard level single points of failure

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Reduce Transaction Isolation Level, etc.

The default transaction isolation level may be set to one of the following
ISevels: READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ,
ERIALIZABLE

As w_eblrely on Eventual Consistency, we can set this to the lowest level
possible

Binary Logging necessitates at least READ-COMMITTED
Therefore:
If Binary Logging is turned OFF, then use
transaction_isolation = READ-UNCOMMITTED
If Binary Logging is turned ON, then use
transaction_isolation = READ-COMMITTED

In either case, transactional consistency guarantees can be weakened:
innodb_flush_log_at_trx_commit = 0

gshet to 1, InnoDB will flush transaction logs to the disk at each commit, provide full ACID
ehavior

Value 0 means that the log is only written to the log file and the log file flushed to disk
approximately once per second

Value 2 means the log is written to the log file at each commit, but the log file is only
flushed to disk approximately once per second

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Make Sure There are Enough Connections and
Threads

thread_cache_size

The minimum rational setting is the number of NIO channels plus 2.
Performance should improve with higher settings, e.g., 4x (# of NIO channels)
thread_concurrency

It makes sense to set it higher than thread_cache_size, as, presumably,
threads spend much time sleeping while InnoDB does the nutty-gritty work

max_connections

Always set this to a high enough number - up to 1000 or more
wait_timeout = 432000 (This is a sample setting)

The shown setting allows for client auto-reconnecting for up to 120 hours.

This server side setting corresponds to maxReconnects MySQL Connector/)J
setting on the JDBC client side.

The JDBC client tries to reconnect every 2 seconds (this time slice is not
configurable). We need 1800 reconnect attempts to last us through one hour.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Make Sure There are Enough InnoDB Threads

innodb_thread_concurrency

Number of threads allowed inside the InnoDB kernel. Arguably, this value
should be greater than thread_pool_size

Although the documentation states that too high value may lead to thread
thrashing, on a system with 8 cores, 64 seems to be a good number to try

innodb_write_io_threads=16 or maybe even higher

innodb_read_io_threads=4 or 8

In case of a key-value database, there is no value in pre-fetching data,
hence, we don’t need too many read threads

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Maximize InnoDB Memory, Shrink Unused
Memory Areas

On a hardware server with 16GB of main memory, try setting
innodb_buffer_pool_size = 10240M

The following memory is allocated by MySQL per thread and is completely
wasted in our case, therefore, we should use the lowest settings:

join_buffer_size - use the lowest allowable value, as we have no joins to
process

key_buffer_size - use the lowest allowable value, as we have no MylISAM
indices

read_buffer_size - set to a low value, e.g., 1M, as we do not scan MyISAM
tables

read_rnd_buffer_size - set to a low value, e.g., 1M, as we do not read
MyISAM sorts

bulk_insert_buffer_size = OM - we do not insert data into MyISAM tables

myisam_sort_buffer_size and myisam_max_sort_buffer_size - set to the
lowest values

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Other Performance Tuning Tweaks to

Try on LinuX

[mysqld_safe]
nice = -20
malloc-lib = tcmalloc
Try giving MySQL higher priority on a dedicated hardware server

Pitfalls: May deadlock MySQL server or even crash the hardware server if MySQL
settings are too aggressive

May make performance worse, unless Voldemort JVM is given same priority
Thread-Caching Malloc library - one of Google performance fixes

Pitfalls: Makes a difference only when the number of threads is fairly low or when the
value BLOBs are large

With BLOB values and very high concurrency of requests, configuring InnoDB with a lot
of threads and not using tcmalloc library might provide better performance results

[mysqld]
memlock

Instructs MySQL to use the memlock() function call to keep MySQL process locked
in memory and to avoid potential swapping out in case of high memory pressure.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

Boston MySQL Meetup - 2010-06-14

Want to Make it Better? Developers Welcome

Project Voldemort uses Apache License

Want to roll up sleeves? Here are some ideas.
Improve the existing MySQL persistent store implementation
or come up with a better one (a JDBC application):

Rewrite connection pooling (the build-in version uses a simple
org.apache.commons.dhcp.BasicDataSource based pooling design).

Make a more efficient use of prepared statements.

Experiment with SQL schema, table, and transaction design:
Use a different PRIMARY KEY, e.g., an AUTO_INCREMENT field.
Add extra fields to speed up queries, e.qg., for searching by “key_".
Replace transaction blocks with Java tricks.
Exotic idea: put each shard in a separate table.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

In Search of a Better Alternative to Replace
Commons DBCP Connection Pooling

Connection pool variants from Apache Commons DBCP

A lot of locking and blocking
Multi-level “DELEGATE” pattern causes data copying, inevitably too many
try-catch blocks, lacking PreparedStatement reuse, difficult to configure.

Alternatives:
Threadlocal wrapper containing a JDBC Connection container object

In each instance of a MySQL pluggable persistence store object, allocate a
ThreadLocal container object that wraps around a java.sqg/l.Connection.

There will be one JDBC Connection container per Java NIO thread

Create, prepare and save as class variables all the necessary PreparedStatement
objects; reuse these Connections and Prepared Statements

Develop own implementation of connection pooling
Make sure prepared statements are really reused and not closed unnecessarily

Take advantage of Connector/J features
Make everything non-blocking and non-locking as much as possible

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

In Search of a Better Alternative to Replace
Commons DBCP Connection Pooling

» A ThreadLocal wrapped JDBC Connection container works the fastest

» However, it assumes that all processing is done “inline” on the respecting NIO
thread and that NIO threads block on DB access without spawning new threads

© 2010 Alex Esterkin

NIO Channel 1

ThreadLocal
Repeatedly

JI//

JReused Connection,
PreparedStatemets

Spawn a thread>

»
’
v

NIO Channel 2

re Also Reused

Voldemort MySQL Store

ThreadlLocal
Repeatedly

Spawn a thread

{Reused Connection,
PreparedStatemets

AN

NIO Channel 1

re Also Reused

Does not work!

Works perfectly

ThreadlLocal
Repeatedly

b JReused Connection,

NIO Channel 2

PreparedStatemets
re Also Reused

Voldemort MySQL Store

ThreadLocal
Repeatedly

3

MySQL
Persistent Store

MySQL
Persistent Store

N~

——_—

MySQL
Persistent Store

MySQL
Persistent Store

N~
Boston MySQL Meetup - 2010-06-14

In Search of a Better Voldemort MySQL Store
Database, Table, and Transaction Design

The built-in MySQL persistence store uses the following table definition:
create table mysql

(key_ varbinary(200) not null,
version_ varbinary(200) not null,
value_ blob,

primary key(key_, version_)
) engine = InnoDB
PUT operations: AUTOCOMMIT is off, each transaction blocks contains
A SELECT by key_ to see if this might be in fact an UPDATE or a read-repair

Iterate over the Result Set, DELETE records with verifiably earlier version_ field values
INSERT a new record

COMMIT or ROLLBACK
Index operations are slow because of PK width
Slow DELETEs of individual records while iterating result sets
Maximum size of BLOB values: 65535 bytes

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

More Unusual Ideas: Table Per Shard

Idea: why not store each shard in a separate MySQL table
<shard_prefix>_<shard_id>

“Table per shard” positives:

Better 1/0O parallelism, lower disk contention, could use more I/O threads in InnoDB.

More granular backup, restore, easier to migrate shards to another node as part of
Voldemort cluster rebalancing

Smaller database file corruption footprint, should there be file corruption after a crash
“Table per shard” negatives:

All pooled connections have to process database requests against all tables.

At least times (number of shards per node) more Prepared Statements.

Everything is a federation, single administrative commands do not suffice any more.

For example, in order to drop all tables in a cluster with 32 shards and a common
Voldemort table prefix “vo/demort’.

foriin "seq 0 32 ; do echo "drop table voldemort$i" | mysql -ujason; done
Same applies to TRUNCATE, BACKUP, etc.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practit
Understanding

;.king on Cassandra: use MySQL for range searches, etc.

: Boston MySQL Meetup - 2010-06-14

ldea: MySQL could help Voldemort to
Implement range searches

Cassandra is not only a key-value store:
Supports “subkeys”
Allows range searches (by using order-preserving partitioners).
ldea: develop such features in Voldemort using MySQL means:
Add necessary extra MySQL fields and indices.
Design and contribute corresponding Voldemort API extensions.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

ldea: MySQL could help Voldemort to Close
any Functional Gaps relative to Cassandra

Adding new features to a NoSQL database
will be easy when a full-featured RDBMS
is used for data persistence!

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

A MySQL Practitione
Understandit

Alex Esterkin

aesterkin@gmail.com
Presently, Database Technologist at Nokia.
Prior to this, Chief Architect at Infobright.

Developed other database server products:
Postgres-derived MPP database server grid at Dataupia;
SybaselQ analytical DW server ant Expressway Technologies/Sybase.
SQL features of Model204 at CCA.

Boston MySQL Meetup - 2010-06-14

