
A MySQL Practitioner‟s Journey to
Understanding and Using NoSQL

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Alex Esterkin

Boston MySQL Meetup – June 14, 2010

Who needs NoSQL? Why use something that simplistic?

The Cassandra Syndrome
◦ Wikipedia: “… a term applied in situations in which valid warnings or

concerns are dismissed or disbelieved”

The case for joining You Know Who (Project Voldemort)

NoSQL is not simple: the CAP theorem, NoSQL techniques

Adapting MySQL for NoSQL DB as its persistent store

Configuring/Tuning MySQL for NoSQL query workload

Experimenting with MySQL schema and table design

Taking on Cassandra: use MySQL for range searches, etc.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Who needs NoSQL? Why use something that simplistic?

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Massive data volumes necessitate massive sharding.

 Extreme query concurrency far exceeding RDMS limits

 When processing an SQL query, it is not feasible

◦ To move data between partitions on multi-gigabyte scale;

◦ To assemble or aggregate results from hundreds of shards.

 ACID transactions do not scale in MPP, cause latency

 Global transaction management is almost impossible

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Web Social Networking is naturally partitioned:

◦ Each user “bakes” in his/her own data.

◦ Query footprint = 1 shard

 No joins needed

 No subqueries needed

 Clients own the data

 Complex values:

◦ Protocol buffers

◦ JSON Objects

 ACID not required

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 NoSQL: is it “No SQL” or is it “Not only SQL”? We‟ll see.

 Partitions are little “soldiers” responding to a simple API

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

The Cassandra Syndrome

◦ Wikipedia: “a term applied in situations in which valid warnings or concerns
are dismissed or disbelieved”

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Moderated by Dr. John Busch, CTO of Schooner Information Technology

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Facebook uses MySQL for searches (not as a NoSQL DB)

 A Year ago, Twitter and Digg still happily used
MySQL+Memcashed sharded clusters

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Facebook still uses MySQL for searches, but Cassandra
evolves and grows.

 This year, Twitter and Digg converted to Cassandra

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

◦

◦

The case for joining You Know Who (Project Voldemort)

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Data models and query APIs in NoSQL databases:

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud

 Of the listed databases, only Cassandra and Voldemort can
scale to petabytes.

 Cassandra:

◦ Borrowed ideas from Oracle, Big Table, and Amazon Dynamo

◦ Not a Key-Value store;

◦ Cassandra‟s “column families” and “supercolumns” look very
similar to “Nested Tables” in Model 204;

◦ There is no place for MySQL in Cassandra.

 Voldemort:

◦ Built on the concepts described in Amazon Dynamo paper;

◦ Developed and used by LinkedIn;

◦ Based on unconfirmed leaks, is used at Apple.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jonathan Ellis Blog, 2009, Rackspace Cloud

 Millions use LinkedIn for professional networking.

 LinkedIn developed a distributed key-value database based on the
principles described in the Amazon Dynamo paper.

 LinkedIn donated it to open source in 2009 as Project Voldemort.

 Voldemort has pluggable persistent store architecture that
supports BerkeleyDB, MySQL, and other data sources.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Source: Jay Kreps (LinkedIn and Project Voldemort)

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

NoSQL is not simple: the CAP theorem, NoSQL techniques

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

• First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

• Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

• First presented in the UC Berkeley Prof. Eric Brewer’s Keynote Address to the “Principles of
Distributed Computing” (PODS) conference in 2000

• Of the three properties of distributed systems—data consistency, system availability, and
tolerance to network partition—only two can be achieved at any given time

• Regarded as proved by MIT Prof. Nancy Lynch
and Seth Gilbert in 2002

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

© 2010 Alex Esterkin

Presented at SOSP‟07 October 14-17, 2007, Stevenson, WA, USA

Boston MySQL Meetup - 2010-06-14

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Source: Verner Vogels, Amazon

 Key domain is partitioned using consistent hashing:
hash(key) = shard_id

 Each server node is a “master node” for several partitions

 Partitions don‟t change, partition ownership can change

 Calculate “master” partition for a key

 Allocate shards in a way that nodes appear in different places
on the hash ring

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14
Source: Jay Kreps (LinkedIn and Project Voldemort)

 Parameters: Replication factor N, # of blocking reads R, # of
blocking writes W

 Replicated copies are on different nodes

 R+W>N allows for quorum resolution

 Preference list: Next N adjacent partitions
in the ring belonging to different nodes

N-R-W

 Thus, “5-3-3” configuration means

◦ 5 replicated requests to insert, read, update, or delete key-values

◦ A quorum of 3 request results is needed for success

◦ Reads and writes both tolerate 2 simultaneous node failures

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Leslie Lamport (1978). "Time, clocks, and the ordering of events in a
distributed system". Communications of the ACM 21 (7): 558–565

 Wikipedia->Lamport Timestamps:

◦ In a distributed system, it is difficult to synchronize time across entities within the system;

◦ Use the concept of a logical clock based on events through which they communicate.

◦ If two entities do not exchange any messages, then they probably do not need to share a
common clock; events occurring on those entities are termed as concurrent events.

◦ On the same local machine we can order the events based on the local clock of the system.

◦ When two entities communicate by message passing, then the send event is said to 'happen
before' the receive event, and the logical order can be established among the events.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Wikipedia->Vector Clock

◦ Vector clocks is an algorithm for generating a partial ordering of events in a
distributed system and detecting causality violations.

◦ The vector clocks algorithm was independently developed by Colin Fidge and
Friedemann Mattern in 1988

 [Jay Kreps (LinkedIn and Project Voldemort)]

◦ In Voldemort, a vector clock is a tuple {t1 , t2 , ..., tn } of counters

 Each value update has a master node; when data is written with
master node i, it increments ti.

 All the replicas will receive the same version

 Allows for consistency resolution between writes on multiple replicas

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 In failure or stress scenarios (e.g., network partition), multiple
concurrent versions of a value may exist simultaneously.

 Concurrent versions can occur when updates to the same key
happen on different nodes in the system.

 Inconsistency Resolution is the process of merging concurrent
versions into a single unified value for the client.

 A simple example of Inconsistency Resolution is "last one
wins“ -the version with the most recent timestamp is kept.

 Eventual consistency may be achieved using Read Repair …

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Read Repair is a technique for pushing missed updates to nodes using a lazy
consistency protocol (also known as Optimistic replication)

 When a key is accessed, the version of the value retrieved from each node is
compared.

 Any server that does not have the latest value is updated with the newer value.

 Read repair is used to make the nodes in the cluster eventually consistent.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Adapting MySQL for NoSQL DB as its persistent store

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Data is organized into “STORES”; typically a “STORE” is a DB table

 Six operations:

◦ PUT (Key, Value)

◦ PUT_IF_ABSENT(Key, Value)

◦ GET (Key)

◦ GETALL(Keys)

◦ DELETE (Key, Version)

◦ TRUNCATE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Each store is backed by an initialized “Storage Engine”

 On the server side, “Value” becomes a “Versioned” Value – comprised
of a Vector Clock (Version) and an actual Value

 Storage Engine API:

◦ PUT(Key, Versioned Value) – same as PUT(Key, Version, Value)

◦ PUT_IF_ABSENT(Key, Versioned Value) – same as
PUT_IF_ABSENT(Key, Version, Value)

◦ GET (Key)

◦ GETALL({Keys})

◦ DELETE (Key, Version)

◦ TRUNCATE()

◦ CLOSE()

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Each record must include KEY, VERSION, and VALUE

 Voldemort uses binary type KEYs

 VERSION needs to be a binary type, as it is a complex variable length structure
that needs to be serialized

 VALUE is a binary large object

 (KEY, VERSION) tuples are either unique or primary key

 If the storage engine stores BLOBs as files, then too many files and too many
full cycle I/O operations – better to incorporate in DB file format

 No need for global transaction management

 No need for XA transactions

 Perhaps, no need for nested transactions? It depends (will discuss later)

 No need for table locking in case of a transactional MySQL storage engine –
fully delegate transaction management to the Engine

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Completely different SQL query processing focus:

◦ Trivial queries against a single table, no joins, no subqueries, only one
WHERE clause predicate – a lookup by a key or a primary key

◦ The queries are always the same, but the query result sets are never reused

◦ Result sets typically consist of a single record

◦ Every record contains a BLOB

 Standard performance tuning recommendations are only
partially valid

◦ For example, with no complex query processing on a thread, you can
benefit by configuring MySQL to use significantly more threads

 Standard benchmark used for tuning are not quite applicable
to a key-value persistence store

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The answer is YES:

◦ InnoDB is transactional, with full support for transactions

◦ Row level locking

◦ MVCC

◦ Extensive and reliable crash recovery features

◦ You can configure it to use a file per table

◦ BLOBs are accommodated very efficiently within the file format

◦ Generally concurrent transaction oriented and very tunable

◦ InnoDB Plug-in with Google performance fixes handles massive
concurrency levels

◦ The entire record is stored on one page

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The following diagram is from „09 MySQL Conference InnoDB presentation by
Heikki Tuuri and Calvin Sun; also featured in the MySQL University InnoDB
internals talk by Calvin Sun

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

See online InnoDB Plug-in Documentation:

 http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html

 http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

 Question: what storage format is more efficient? COMPACT? DYNAMIC?
Antelope? Barracuda?

 It is more important to minimize the number I/O operations (entire record fits
on one page) than to optimize index based query processing operations

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-file-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html
http://www.innodb.com/doc/innodb_plugin-1.0/innodb-row-format.html

 Putting a global private cloud based storage system in production

◦ Totally different from a stateless service

◦ Totally different from single server/cluster or even grid based systems

◦ Backup and restore

◦ Upgrades

◦ Monitoring, provisioning, de-provisioning

◦ Capacity planning

 Performance tuning

◦ Performance is deceitfully high when data is in RAM

◦ Need realistic tests: production-like systems, clusters, data, and load

 Operational advantages

◦ No single point of failure

◦ Predictable SLAs

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Configuring/Tuning MySQL for NoSQL query workload

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Sample settings that definitely make sense:

cachePrepStmts=true

cacheResultSetMetadata=true

prepStmtCacheSize=1024

useServerPrepStmts=true

cacheServerConfiguration=true

useLocalSessionState=true

enableQueryTimeouts=false

elideSetAutoCommits=true

alwaysSendSetIsolation=false

tcpKeepAlive=true

tcpTrafficClass=24

autoReconnect=true

autoReconnectForPools=true (To preserve server side PreparedStatements)

maxReconnects= 216000 (Reconnects are attempted every 2 seconds)

allowMultiQueries=true

maxAllowedPacket=134217728 (Ability to store values up to 128M in size)

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

skip-external-locking

skip-locking

innodb_support_xa = false

This is almost a no-brainer:

 External locking makes no sense, as we:

 use eventual consistency mechanisms,

 employ only InnoDB storage engine,

 don‟t use global transaction manager

 Regular table locking can also be turned off:

 we only use statement level transactions

 since InnoDB provides row level locking and MVCC

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Arguably, binary logging is not needed, as in case of server crash, we can rely
on eventual consistency mechanisms, such as read repair, for data recovery

 Arguments in favor of turning OFF binary logging:

◦ Much better INSERT, REPLACE, and UPDATE performance in terms of throughput

◦ In our tests, throughput (# requests per second) we have seen 2-3X difference

 Arguments in favor of turning ON binary logging:

◦ Absolutely required to provide “point in time” recovery

◦ In case of InnoDB file corruption, restoring from backup results in stale data, eventual
consistency mechanisms might take too long to close the gap

◦ In case of high update/insert/delete request volume or percentage, the shards
containing most recent record replicas may become single points of failure

◦ Binary logging tangibly increases the probability that InnoDB may automatically
recover after a server crash

 A valid question to ask: Which of two options will provide better performance:

◦ Configure Voldemort cluster replication as 3-2-2 AND turn binary logging ON

◦ Configure Voldemort cluster replication as 5-3-3 AND turn binary logging OFF (in this
case, there will be no shard level single points of failure

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The default transaction isolation level may be set to one of the following
levels: READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ,
SERIALIZABLE

 As we rely on Eventual Consistency, we can set this to the lowest level
possible

 Binary Logging necessitates at least READ-COMMITTED

 Therefore:

◦ If Binary Logging is turned OFF, then use

transaction_isolation = READ-UNCOMMITTED

◦ If Binary Logging is turned ON, then use

transaction_isolation = READ-COMMITTED

 In either case, transactional consistency guarantees can be weakened:

innodb_flush_log_at_trx_commit = 0

◦ If set to 1, InnoDB will flush transaction logs to the disk at each commit, provide full ACID
behavior

◦ Value 0 means that the log is only written to the log file and the log file flushed to disk
approximately once per second

◦ Value 2 means the log is written to the log file at each commit, but the log file is only
flushed to disk approximately once per second

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

thread_cache_size

 The minimum rational setting is the number of NIO channels plus 2.

 Performance should improve with higher settings, e.g., 4x (# of NIO channels)

thread_concurrency

 It makes sense to set it higher than thread_cache_size, as, presumably,
threads spend much time sleeping while InnoDB does the nutty-gritty work

max_connections

 Always set this to a high enough number – up to 1000 or more

wait_timeout = 432000 (This is a sample setting)

 The shown setting allows for client auto-reconnecting for up to 120 hours.

 This server side setting corresponds to maxReconnects MySQL Connector/J
setting on the JDBC client side.

 The JDBC client tries to reconnect every 2 seconds (this time slice is not

configurable). We need 1800 reconnect attempts to last us through one hour.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

innodb_thread_concurrency

◦ Number of threads allowed inside the InnoDB kernel. Arguably, this value
should be greater than thread_pool_size

◦ Although the documentation states that too high value may lead to thread
thrashing, on a system with 8 cores, 64 seems to be a good number to try

innodb_write_io_threads=16 or maybe even higher

innodb_read_io_threads=4 or 8

◦ In case of a key-value database, there is no value in pre-fetching data,
hence, we don‟t need too many read threads

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 On a hardware server with 16GB of main memory, try setting
innodb_buffer_pool_size = 10240M

 The following memory is allocated by MySQL per thread and is completely
wasted in our case, therefore, we should use the lowest settings:

◦ join_buffer_size – use the lowest allowable value, as we have no joins to
process

◦ key_buffer_size – use the lowest allowable value, as we have no MyISAM
indices

◦ read_buffer_size – set to a low value, e.g., 1M, as we do not scan MyISAM
tables

◦ read_rnd_buffer_size – set to a low value, e.g., 1M, as we do not read
MyISAM sorts

◦ bulk_insert_buffer_size = 0M – we do not insert data into MyISAM tables

◦ myisam_sort_buffer_size and myisam_max_sort_buffer_size – set to the
lowest values

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

[mysqld_safe]

nice = -20

malloc-lib = tcmalloc

 Try giving MySQL higher priority on a dedicated hardware server

◦ Pitfalls: May deadlock MySQL server or even crash the hardware server if MySQL
settings are too aggressive

◦ May make performance worse, unless Voldemort JVM is given same priority

 Thread-Caching Malloc library – one of Google performance fixes

◦ Pitfalls: Makes a difference only when the number of threads is fairly low or when the
value BLOBs are large

◦ With BLOB values and very high concurrency of requests, configuring InnoDB with a lot
of threads and not using tcmalloc library might provide better performance results

[mysqld]

memlock

 Instructs MySQL to use the memlock() function call to keep MySQL process locked
in memory and to avoid potential swapping out in case of high memory pressure.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Experimenting with MySQL schema and table design

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Project Voldemort uses Apache License

 Want to roll up sleeves? Here are some ideas.

◦ Improve the existing MySQL persistent store implementation
or come up with a better one (a JDBC application):

 Rewrite connection pooling (the build-in version uses a simple
org.apache.commons.dhcp.BasicDataSource based pooling design).

 Make a more efficient use of prepared statements.

◦ Experiment with SQL schema, table, and transaction design:

 Use a different PRIMARY KEY, e.g., an AUTO_INCREMENT field.

 Add extra fields to speed up queries, e.g., for searching by “key_”.

 Replace transaction blocks with Java tricks.

 Exotic idea: put each shard in a separate table.

◦

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Connection pool variants from Apache Commons DBCP

◦ A lot of locking and blocking

◦ Multi-level “DELEGATE” pattern causes data copying, inevitably too many
try-catch blocks, lacking PreparedStatement reuse, difficult to configure.

 Alternatives:

ThreadLocal wrapper containing a JDBC Connection container object

◦ In each instance of a MySQL pluggable persistence store object, allocate a
ThreadLocal container object that wraps around a java.sql.Connection.

◦ There will be one JDBC Connection container per Java NIO thread

◦ Create, prepare and save as class variables all the necessary PreparedStatement
objects; reuse these Connections and Prepared Statements

Develop own implementation of connection pooling

◦ Make sure prepared statements are really reused and not closed unnecessarily

◦ Take advantage of Connector/J features

◦ Make everything non-blocking and non-locking as much as possible

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 A ThreadLocal wrapped JDBC Connection container works the fastest

 However, it assumes that all processing is done “inline” on the respecting NIO
thread and that NIO threads block on DB access without spawning new threads

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 The built-in MySQL persistence store uses the following table definition:

create table mysql

(key_ varbinary(200) not null,

version_ varbinary(200) not null,

value_ blob,

primary key(key_, version_)

) engine = InnoDB

 PUT operations: AUTOCOMMIT is off, each transaction blocks contains

◦ A SELECT by key_ to see if this might be in fact an UPDATE or a read-repair

◦ Iterate over the Result Set, DELETE records with verifiably earlier version_ field values

◦ INSERT a new record

◦ COMMIT or ROLLBACK

 Index operations are slow because of PK width

 Slow DELETEs of individual records while iterating result sets

 Maximum size of BLOB values: 65535 bytes

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

 Idea: why not store each shard in a separate MySQL table
<shard_prefix>_<shard_id>

 “Table per shard” positives:

◦ Better I/O parallelism, lower disk contention, could use more I/O threads in InnoDB.

◦ More granular backup, restore, easier to migrate shards to another node as part of
Voldemort cluster rebalancing

◦ Smaller database file corruption footprint, should there be file corruption after a crash

 “Table per shard” negatives:

◦ All pooled connections have to process database requests against all tables.

◦ At least times (number of shards per node) more Prepared Statements.

◦ Everything is a federation, single administrative commands do not suffice any more.

◦ For example, in order to drop all tables in a cluster with 32 shards and a common
Voldemort table prefix “voldemort”.

for i in `seq 0 32`; do echo "drop table voldemort$i" | mysql –ujason; done

◦ Same applies to TRUNCATE, BACKUP, etc.

© 2010 Alex Esterkin Boston MySQL Meetup - 2010-06-14

Taking on Cassandra: use MySQL for range searches, etc.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

 Cassandra is not only a key-value store:

◦ Supports “subkeys”

◦ Allows range searches (by using order-preserving partitioners).

 Idea: develop such features in Voldemort using MySQL means:

◦ Add necessary extra MySQL fields and indices.

◦ Design and contribute corresponding Voldemort API extensions.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Adding new features to a NoSQL database
will be easy when a full-featured RDBMS

is used for data persistence!

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

Questions?

Alex Esterkin

aesterkin@gmail.com

 Presently, Database Technologist at Nokia.

 Prior to this, Chief Architect at Infobright.

 Developed other database server products:

 Postgres-derived MPP database server grid at Dataupia;

 SybaseIQ analytical DW server ant Expressway Technologies/Sybase.

 SQL features of Model204 at CCA.

Boston MySQL Meetup - 2010-06-14© 2010 Alex Esterkin

