
Slide 1 11/11/2013

Jacob Nikom

November 11, 2013

Using
GTID-based Replication

for
MySQL High Availability

Slide number 2 11/11/2013

Outline
•  High Availability (HA) Basics

–  What is HA and why do we need it?
–  Data Centers (DC) Downtime Causes and Consequences
–  High Availability Levels
–  How to Achieve Necessary Level of HA

•  MySQL Replication as High Availability Solution
–  Major Oracle MySQL HA Solutions
–  Their Advantages and Disadvantages
–  Brief History of MySQL Replication
–  Replication Enhancements in MySQL 5.6

•  How Coordinate Replication Works
–  Replication Data Files
–  Replication Execution
–  Replication Binary Log Coordinates
–  HA and Coordinate Replication

•  How GTID Replication Works
–  What is GTID?
–  How to Configure GTID Replication?
–  GTID Replication Basics
–  Coordinate Replication Failover
–  GTID Replication Failover

•  Amazon Cloud-based HA Architecture
–  AWS Main Components
–  AWS Failure Modes and Effects
–  Failover with GTID Replication and ZFS Snapshots
–  Failover Prototype and Demonstration

•  Summary

Slide number 3 11/11/2013

What is HA? Why Do We Need it?

Availability of the service is a percentage of the time
when the system is able to provide the service

(“Service Availability: Principles and Practice” by Maria Toeroe, Francis Tam, 2012)

High Availability for Data Centers usually means:
•  Guaranteed Throughput (number of transactions per second)
•  Guaranteed Response time (latency)
•  Guaranteed Uptime/Downtime per year (in percentiles/seconds, minutes, hours)

Definitions of some important HA terms
§  Uptime and Downtime

o  The proportion of time a high availability service is up or down over the total time. Normally, uptime + downtime = 100%.
§  Single point of failure (SPOF)

o  An isolated device or piece of software for which a failure will cause a downtime of the HA service.
o  The goal of an HA architecture is to remove the SPOFs.

§  Failover and Switchover
o  Switching to a redundant or standby computer server.
o  Usually failover is automatic and operates without warning while switchover requires human intervention

§  Fencing/Stonith
o  Often, an HA architecture is stuck by a non-responsive device that is not releasing a critical resource.
o  Fencing or Stonith (Shoot The Other Node In The Head) is then required.

§  Cluster
o  A group of computers acting together to offer a service

§  Fault Tolerance
o  Ability to handle failures with graceful degradation. Not all components need the same level of fault tolerance

§  Disaster Recovery
o  The plan and technologies to restore the service in case of disaster. Often longer downtime allowed in this case.

Slide number 4 11/11/2013

What is HA? Why do we need it (cont.)?

Amazon.com website goes down for U.S., Canadian users
NEW YORK | Mon Aug 19, 2013 3:26pm EDT
Aug 19 (Reuters) - Amazon.com, the website of the world's largest online retailer, went down on Monday for many
users across the United States and Canada.

Amazon did not respond to requests for comment.

Company’s Worst Nightmare Scenario!

Why we are so interested in High Availability?

High Availability vs. Continuous Availability
•  A highly available system allows planned outages

•  A continuously available system does not allow planned outages, essentially supporting no downtime operations

High Availability vs. Fault Tolerance
•  A fault tolerant system in case of a component failure has no service interruption (higher solution cost)

•  A highly available system has a minimal service interruption (lower solution cost)

Slide number 5 11/11/2013

DC Downtime Causes and Consequences

What Causes Data Center Service Downtime?
§  System Failures

o  Hardware Faults
o  Software bugs or crashes

§  Physical Disasters
§  Scheduled Maintenance
§  User Errors

What Are the System Downtime Effect and Impact?
u  Effect:

q  Service Unavailability
q  Bad response time

u  Impact:
q  Revenue loss
q  Poor customer relationships
q  Reduced employee productivity
q  Regulatory issues

MySQL Servers Downtime Causes
•  - Operating Environment
•  - Performance
•  - Replication
•  - Data Loss & Corruption

35.1%

34.4%

20.8%

9.7%

Baron Schwartz, Percona, 2011

Slide number 6 11/11/2013

High Availability Levels

Availability % Downtime per year Downtime per month Downtime per week
90% ("one nine") 36.5 days 72 hours 16.8 hours

99% ("two nines") 3.65 days 7.20 hours 1.68 hours

99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes

99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes

99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

Availability Level often associated with UPTIME

Easy to calculate losses due to unavailability

Slide number 7 11/11/2013

How to Achieve Necessary Level of HA

Component Technique Explanation
1 Storage RAID If one disk crashes, the service still works

2 Servers Clustering If one server crashes, the service still works

3 Power Supply UPS If the power source fails, the UPS provides the power
and the service still works

4 Network Redundant routers If a router were to fail connectivity would be preserved by
routing traffic through a redundant connection and the
service still works

5 Location Another Data
Center

If a datacenter is destroyed or disconnected, move all
computation to another data center and the service still
works

Why High Availability is so hard with databases?

1.  High availability databases are essentially real-time systems or RTS. Sometimes they are even distributed RTS. That type of
systems are traditionally very difficult to deal with.

2.  Real-time data processing functionality (caches and dirty data logging) forces tight coupling between software and hardware
components. Therefore software redundancy requires redundancy of corresponding hardware as well.

3.  Real-time consistency between data stored on redundant components requires continuous and instantaneous
synchronization. This is difficult to implement without significant overhead.

Removing Single Point of Failures (SPOF)

HA could be achieved by two ways:
1.  Increasing the reliability of each components
2.  Adding the redundant components
The first way is less efficient – the reliability of the system will be lower than the reliability of any individual component
The second way is more efficient - reliability of the system will be higher than the reliability of any individual component

Slide number 8 11/11/2013

Major HA Solutions Using Oracle MySQL

HA Feature MySQL Replication DRBD MySQL NDB Cluster

1 Platform Support All supported by MySQL
server Linux All Supported by MySQL

cluster

2 Supported Storage
Engine

Transactionality required
for GTIDs InnoDB NDB

3 Automatic Failover Yes, with MySQL 5.6
Utilities

Yes, with Corosync +
Pacemaker Yes

4 Failover Time 5 second + InnoDB
Recovery time

Automatic failover in
about 1 minute with

InnoDB log
files of about 100 MB

1 second or less

5 Replication Mode Asynchronous+
Semi-synchronous

Asynchronous+
Synchronous Synchronous

6 Shared Storage No, distributed access
nodes

No, distributed access
nodes

No, distributed access
nodes

7 Number of Nodes Master + Multiple Slaves Active/Passive Master +
Multiple Slaves 2555 + Multiple Slaves

8 Availability Level 99.9% 99.99% 99.999%

Slide number 9 11/11/2013

HA Solution Advantages Disadvantages

1 MySQL Replication
(before 5.6)

•  Simple
•  Inexpensive
•  Extends existing database architecture
•  All the servers can be used, no idle standby
•  Supports MyISAM
•  Caches on failover slave are not cold
•  Online schema changes
•  Low impact backups
•  99.9% availability

•  Variable level of availability (98-99.9+%)
•  Could be a SPOF
•  Replication can break
•  Replication can lag behind
•  Replication can be out of sync
•  Not suitable for high write loads
•  Reads scale only if they are split from writes
•  Can lose data

2 DRBD

•  No data loss
•  Much higher write capacity
•  No SPOF with DRBD
•  Provides high availability and data integrity across

two servers in the event of hardware or system
failure.

•  Ensures data integrity by enforcing write
consistency on the primary and secondary nodes.

•  99.99% availability

•  High load on the network
•  Only works with engine supporting auto-recovery
•  More complex: NIC bounding, fencing, etc.
•  Requires fencing
•  A server is standby, idle hardware
•  Cold cache after failover
•  No online schema change
•  Corruption propagation

3 MySQL NDB
Cluster

•  No Single Point of Failure
•  Auto-sharding for write-scalability
•  SQL and NoSQL interfaces
•  Real-time responsiveness
•  Active / active geographic replication
•  Online scaling and schema upgrades
•  99.999% availability

•  Incompatible with typical database architecture
•  Complex, much than other solutions
•  Needs work on schema and queries for good

performance
•  Higher skill set required
•  Poor for large joins
•  Size of dataset more limited, large memory footprint
•  Minimum of physical servers

MySQL Replication is the most convenient HA Solutions!

Advantages and Disadvantages

Must Increase MySQL Replication Availability!

Slide number 10 11/11/2013

u  MySQL 3.23 - Generally Available, January 2001
o  MySQL Replication came to be (3.23.15 – May 2000).
o  Replication filters

u  MySQL 4.0 - Generally Available, March 2003
o  Two Replication Threads instead of just one.
o  Slave Relay logs.

u  MySQL 4.1 - Generally Available, October 2004
o  Replication over SSL.
o  Disk synchronization options for binary log.

u  MySQL 5.0 - Generally Available, October 2005
o  Replication of Stored Routines and Triggers.
o  Slave retries transactions on transient errors.

u  MySQL 5.1 - Generally Available, November 2008
o  Row-based Replication (RBR).

u  MySQL 5.5 - Generally Available, December 2010
o  Semi-sync replication.
o  Replication Heartbeats.
o  RBR type conversion.

u  MySQL 5.6 - Generally Available, February 2013
o  Crash-safe Slaves.
o  Global Transaction Ids.
o  Replication Event Checksums.
o  Binary Log Group Commit.
o  Multi-threaded Slaves.
o  RBR enhanced.
o  MySQL Utilities 1.3, GA on August 2013

u  MySQL 5.7.2 DMR, September 2013
o  Multi-Threaded Inter-Transactional Replication
o  Lossless Semi-Synchronous Replication
o  MySQL Utilities 1.4

2001 2003 2005 2007 2009 2011 20013

Av
ai

la
bl

e
Fe

at
ur

es

MySQL 3.23 MySQL 4.0 MySQL 4.1
MySQL 5.0

MySQL 5.1
MySQL 5.5

MySQL 5.6

MySQL 5.7 DMR

Brief History of MySQL Replication

Slide number 11 11/11/2013

u  Failover & Recovery:
q  Global Transaction Identifiers (GTID)
q  Server UUIDs
q  Crash Safe Slaves & Binary Logs
q  Replication Failover and Administration Utilities

u  Data Integrity:
q  Replication Event Checksums

u  Performance:
q  Multi-Threaded Slaves
q  Binary Log Group Commit
q  Optimized Row-Based Replication

u  Database Operations:
q  Replication Utilities
q  Time-Delayed Replication
q  Remote Binlog Backup
q  Information Log Events

Replication Enhancements in MySQL 5.6

Slide number 12 11/11/2013

How Coordinate Replication Works
1. Master server enables binary log
2. Client commits query to the master
3. Master executes the query and commits it
4. Master stores the query in the binary log as en event
5. Master returns to the client with commit confirmation
6. Slave server configures replication
mysql> CHANGE MASTER TO
MASTER_HOST='12.34.56.789',MASTER_USER='slave_user',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS= 107;

Client

Master

Slave

binary logs relay logs

IO Thread SQL Thread Dump Thread

Commit

master.info relay-log.info

Execute

mysqld-bin.index

mysqld-relay-bin.index

Return to Client

8

2

3

4

 7. Replication starts mysql> START SLAVE;
 8. IO thread starts and initiates dump thread on the master
 9. Dump thread reads events from binary log
10. Dump thread sends events to IO thread from the slave
11. IO thread writes events into relay log
12. IO thread updates master.info file parameters
13. SQL thread reads relay log events
14. SQL thread executes events on the slave
15. SQL thread updates relay-log.info file

1

9
10

11
12

13

14

15

14

6

2
3
4

1

5

6

5

13
12
11
10
9
8
7

1

1

6 6

6 6

15

7

8

Slide number 13 11/11/2013

[root@node1 data]# ls –l
-rw-r----- 1 mysql mysql 144703488 Oct 27 19:47 ibdata1
-rw-r----- 1 mysql mysql 67108864 Oct 27 19:47 ib_logfile0
-rw-r----- 1 mysql mysql 67108864 Oct 27 19:47 ib_logfile1

-rw-rw---- 1 mysql mysql 60 Oct 22 22:31 master.info
drwx------ 2 mysql mysql 81 May 20 23:21 mysql
-rw-rw---- 1 mysql mysql 6 Oct 22 22:31 mysqld.pids
-rw-rw---- 1 mysql mysql 205 Oct 22 22:31 mysqld-relay-bin.000001
-rw-rw---- 1 mysql mysql 526 Oct 22 22:33 mysqld-relay-bin.000002
-rw-rw---- 1 mysql mysql 52 Oct 22 22:31 mysqld-relay-bin.index
-rw-rw---- 1 mysql root 11309 Oct 22 22:31 mysql-error.err
-rw-rw---- 1 mysql mysql 58 Oct 22 22:31 relay-log.info
drwx------ 2 mysql mysql 55 May 20 23:21 performance_schema
drwx------ 2 mysql mysql 2 Oct 22 22:33 test

[root@node1 data]# ls -l

-rw-r----- 1 mysql mysql 144703488 Oct 22 22:33 ibdata1
-rw-r----- 1 mysql mysql 67108864 Oct 22 22:33 ib_logfile0
-rw-r----- 1 mysql mysql 67108864 Oct 22 22:33 ib_logfile1
drwx------ 2 mysql mysql 81 May 20 23:21 mysql
-rw-rw---- 1 mysql mysql 332 Oct 22 22:30 mysqld-bin.000001
-rw-rw---- 1 mysql mysql 354 Oct 22 22:33 mysqld-bin.000002
-rw-rw---- 1 mysql mysql 40 Oct 22 22:31 mysqld-bin.index
-rw-rw---- 1 mysql mysql 5 Oct 22 22:31 mysqld.pids
-rw-r----- 1 mysql root 12616 Oct 25 03:20 mysql-error.err
drwx------ 2 mysql mysql 55 May 20 23:21 performance_schema
drwx------ 2 mysql mysql 2 Oct 22 22:33 test

[root@node1 data]#

Replication Data Files
Master Server 5.5 Slave Server 5.5

File mysqld-bin.index
[root@node1 data]# more /usr/local/mysql/data/mysqld-bin.index

/usr/local/mysql/data/mysqld-bin.000001
/usr/local/mysql/data/mysqld-bin.000002

[root@node1 data]#

File mysqld-relay-bin.index
[root@node1 data]# more /usr/local/mysql/data/mysqld-relay-bin.index

/usr/local/mysql/data/mysqld-relay-bin.000001
/usr/local/mysql/data/mysqld-relay-bin.000002

[root@node1 data]#

Events Layout on a Binary Log File (or Relay Log File)
•  File based log that records the changes on the master.
•  Statement or Row based format (may be intermixed).
•  Split into transactional groups containing multiple events
•  Each event contains server_id value.

Transactional group Transactional group

BEGIN COMMIT BEGIN … COMMIT Ev2
se

rv
er

_i
d

 Ev1

se
rv

er
_i

d

… Ev2

se
rv

er
_i

d

 Ev1

se
rv

er
_i

d

Slide number 14 11/11/2013

Replication Data Files (cont.)

master.info

relay-log.info

1 15 Number of lines in the file
2 mysqld-relay-bin.000001 Current binlog file being read(Master_Log_File)
3 4723 Last binlog position read (Read_Master_Log_Pos)
4 node1 Master host connected to (Master_Host)

5 root Replication user (Master_User)
6 kiva Replication password
7 3306 Master port used (Master_Port)
8 60 How many times slave will try to reconnect (Connect_Retry)

9 0 If SSL is enabled is 1, 0 otherwise
10 – 15 SSL-related information

1 ./mysqld-relay-bin.000001 Relay log file (Relay_Log_File)

2 874 Relay log position (Relay_Log_Pos)

3 mysql-bin.000001 Master log file (Relay_Master_Log_File)

4 729 Master log position (Exec_Master_Log_Pos)

Slide number 15 11/11/2013

Coordinate Replication Execution

mysql> SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 77 | | |
+---------------+----------+--------------+------------------+

Replication coordinates:
1. Master binary log file name (Master_Log_File) - the name of the particular binary log on the master (like mysqld-bin.000001)
2. Master binary log position (Binary_Log_Pos) – the number of the last event executed on the master (end of the binlog file)
3. Position in the master binary log where IO thread read to (Read_Master_Log_Pos)
4. Position in the master binary log where SQL thread executed to (Exec_Master_Log_Pos)
5. Slave relay log name (Relay_Log_File) – the name of the particular relay log on the salve (like mysqld-relay-bin.000001)
6. Slave relay log position where SQL thread executed to (Relay_Log_Pos) – the last event in the relay log on the slave

76 77 … 67 … 57 …

Master Binary Log

Last executed event on the master (binlog Position) Last executed event on the slave (Exec_Master_Log_Pos)

Last read event on the slave (Read_Master_Log_Pos)

File: MySQL binary log file on the master
Position: Last executed position (next write) in the binary log. If the slave
caught up with the master, it should execute next events from this position.

56 57 …

Slave Relay Log
Last executed event on the slave (Relay_Log_Pos)

Slide 16 11/11/2013

Replication Binary Log Coordinates
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 127.0.0.1
 Master_User: master_user
 Master_Port: 26768
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001 (IO Thread reads this file)
 Read_Master_Log_Pos: 4723 (Position in master binary log file where IO Thread has read to)
 Relay_Log_File: mysqld-relay-bin.000001
 Relay_Log_Pos: 874 (Position in the relay log file where SQL thread read and executed events
 Relay_Master_Log_File: mysql-relay-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
.:
Last_Errno: 0 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 729 (Position in master binary log file that SQL Thread read and executed up to
 Relay_Log_Space: 1042 The total combined size of all existing relay log files
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
.: . . .
Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
1 row in set (0.00 sec)

Coordinates usage examples:
Connect to the master using master’s binary log
slave> CHANGE MASTER TO
MASTER_HOST='12.34.56.789',MASTER_USER='slave_user',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=4723;

Connect to the new master/old slave using slave’s relay log
slave> CHANGE MASTER TO
MASTER_HOST='12.34.56.789',MASTER_USER='slave_user',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-relay-bin.000001', MASTER_LOG_POS=729; Master Slave1

Slave2

Master Slave1

Slave2

Crashed!

Failover

Slide number 17 11/11/2013

HA and Coordinate Replication

u  Coordinate based replication is great – it is easy to setup
u  Coordinate based replication is bad – it is difficult to failover

q  When the master fails, the slaves are ready to replace it
q  However, the process of failure detection and acting upon in case of multiple

servers requires significant DBA intervention
q  Difficult to follow changes through a complex replication stream that go to multiple

servers

How to Improve It?
If every transaction has its own globally unique identifier (GTID), it becomes a lot easier to track changes

Drawbacks
u  Additional complexity
u  Incompatibility with existing solution – coordinate based replication

Advantages
u  It is possible to identify a transaction uniquely across the replication servers.
u  Make the automation of failover process much easier. There is no need to do calculations, inspect the binary log and so

on. Just execute the command MASTER_AUTO_POSITION=1.
u  At application level it is easier to do WRITE/READ split. After a write on the MASTER you have a GTID so just check if

that GTID has been executed on the SLAVE that you use for reads.
u  Development of new automation tools isn’t a pain now.

Slide number 18 11/11/2013

What is GTID?

Where GTID comes from?
ls -l /usr/local/mysql/data
total 537180
-rw-r----- 1 mysql mysql 56 Oct 17 10:49 auto.cnf
drwx------ 2 mysql mysql 4096 Oct 17 10:49 bench/
-rw-r----- 1 mysql mysql 348127232 Oct 17 11:58 ibdata1
-rw-rw---- 1 mysql mysql 100663296 Oct 17 11:58 ib_logfile0
-rw-rw---- 1 mysql mysql 100663296 Oct 17 11:24 ib_logfile1
drwx------ 2 mysql mysql 32768 Oct 17 10:55 mhs/
drwx------ 2 mysql mysql 4096 Oct 17 10:49 mysql/
-rw-rw---- 1 mysql mysql 6 Oct 17 11:58 mysqld.pids
-rw-r----- 1 mysql root 9131 Oct 17 11:58 mysql-error.err
drwx------ 2 mysql mysql 4096 Oct 17 10:49 performance_schema/
drwxr-xr-x 2 mysql mysql 4096 Oct 17 10:49 test/

[root@jnikom-linux data]# more auto.cnf
[auto]
server-uuid=965d996a-fea7-11e2-ba15-001e4fb6d589
[root@jnikom-linux data]#

965d996a-fea7-11e2-ba15-001e4fb6d589:1

BEGIN Ev1 Ev2 … COMMIT BEGIN Ev1 Ev2 … COMMIT GTID GTID

•  Server identifier – 128-bit identification number (SERVER_UUID).
•  It logically identifies the server where the transaction was originated.
•  Every server has its own SERVER_UUID.
•  If you deleted it it will be regenerated after you restarted your server
•  GTID is written into binary log

•  TIN – 64-bit transaction identification number.
•  A sequence number incremented with every

new transaction.
•  It starts with 1. There is no 0

MySQL 5.6 binary log

Transactional group Transactional group

Slide number 19 11/11/2013

How to Configure GTID Replication?
my.cnf new additional parameters

u gtid_mode
q  It could be ON or OFF (not 1 or 0)
q  It enables the GTID on the server

u log_bin (existed)
q Enables binary logs
q Mandatory to create a replication

u log-slave-updates
q Slave servers must log its changes
q Needed for server promotion/

demotion
u enforce-gtid-consistency

q Forces the server to be safe by
using only transactional tables

q Non-transactional statements are
denied by the server.

New replication configuration command

slave> CHANGE MASTER TO MASTER_HOST=’node1',
 MASTER_USER=’roor',
 MASTER_PASSWORD=’kiva',
 MASTER_AUTO_POSITION=1;

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event
 Master_Host: node1

 Master_User: root

 Master_Port: 3306
 Connect_Retry: 60

 Master_Log_File: mysqld-bin.000002

 Read_Master_Log_Pos: 354
 Relay_Log_File: mysqld-relay-bin.000002

 Relay_Log_Pos: 526

 Relay_Master_Log_File: mysqld-bin.000002
 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes
 :

 Last_Errno: 0

 Last_Error:
 Skip_Counter: 0

 Exec_Master_Log_Pos: 354

 Relay_Log_Space: 731
 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0
 Master_SSL_Allowed: No

 :
 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0
 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 28

 Master_UUID: b9ff49a4-3b50-11e3-85a5-12313d2d286c
 Master_Info_File: mysql.slave_master_info

 SQL_Delay: 0

 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Slave has read all relay log; waiting for the slave I/O thread

 Master_Retry_Count: 86400
 Master_Bind:

 Last_IO_Error_Timestamp:

 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Retrieved_Gtid_Set: b9ff49a4-3b50-11e3-85a5-12313d2d286c:2
 Executed_Gtid_Set: b9ff49a4-3b50-11e3-85a5-12313d2d286c:1-2

 Auto_Position: 1
1 row in set (0.00 sec)

Slide number 20 11/11/2013

GTID Replication Basics

u Each server has binary log (master and slave)
u GTIDs are written into binary log
u GTIDs executed on a server contained in a new, read-only, global server variable GTID_EXECUTED
u GTID_EXECUTED holds the range of GTIDs committed on this server as a string

Database
Server

0EB3E4DB-4C31-42E6-9F55-EEBBD608511C:1
0EB3E4DB-4C31-42E6-9F55-EEBBD608511C:2
4D8B564F-03F4-4975-856A-0E65C3105328:1
0EB3E4DB-4C31-42E6-9F55-EEBBD608511C:3
4D8B564F-03F4-4975-856A-0E65C3105328:2

Binary log

mysql> SELECT @@GLOBAL.GTID_EXECUTED;
+--+
| @@GLOBAL.GTID_EXECUTED |
+--+
| 0EB3E4DB-4C31-42E6-9F55-EEBBD608511C:1-3,
4D8B564F-03F4-4975-856A-0E65C3105328:1-2 |
+--+
1 row in set (0.00 sec)

For each server binary log serves as “GTID repository”

Slide number 21 11/11/2013

GTID Replication Basics (cont.)
u  GTIDs set possesses both cardinal and ordinal properties
u  Two sets of GTIDs could be compared and sorted at the same time
u  Those properties define powerful model for tracking transactions

master> SELECT @@GLOBAL.GTID_EXECUTED;
+--+
| @@GLOBAL.GTID_EXECUTED |
+--+
| 4D8B564F-03F4-4975-856A-0E65C3105328:1-1000000 |
+--+

slave> SELECT @@GLOBAL.GTID_EXECUTED;
+---+
| @@GLOBAL.GTID_EXECUTED |
+---+
| 4D8B564F-03F4-4975-856A-0E65C3105328:1-999999 |
+---+

It is easy to find:
1. One transaction is missing 2. Which one is missing

New Replication Protocol
1.  When slave connects to the master, it sends the range of GTIDs that slave has executed and committed
2.  In response the master sends all other transactions, i.e. those that the slave has not yet executed

Master
Id1

Trx1
Id2

Trx2
Id3

Trx3

Binary
log

Slave
Id1

Trx1
Id2

Trx2

Binary
log Id1:Trx1, Id2:Trx2

Id3:Trx3

u  SQL command to tell the server to use the new protocol is: CHANGE MASTER TO MASTER_AUTO_POSITION = 1;
u  If MASTER_AUTO_POSITION = 1, you cannot specify MASTER_LOG_FILE or MASTER_LOG_POS.

Slide number 22 11/11/2013

Coordinate Replication Failover

master> SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000002 | 12345 | | |
+------------------+----------+--------------+------------------+

Master

Client

Switching to the new master
1.  Find new master binary log coordinates (file name and position) using “SHOW MASTER STATUS” command
2.  Switch to the new master using “CHANGE MASTER TO MASTER_HOST …” command using new master

binary log coordinates

Slave1

Binary log
File: mysql-bin.000007
Position: 345 Slave2

Binary log
File: mysql-bin.000006
Position: 23456

Tedious and error-prone procedure!
Relay log

File: mysql-relay-bin.000008
Position: 5678 Slave3

Slide number 23 11/11/2013

GTID Replication Failover

master> SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+--+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_set |
+------------------+----------+--------------+------------------+--+
| mysql-bin.000002 | 12345 | test | manual,mysql | 5ffd0c1b-cd65-12c4-21b2-ab91a9429562:1-555
+------------------+----------+--------------+------------------+--+

Master

Client

Switching to the new master
1.  Switch to the new master using “CHANGE MASTER TO MASTER_AUTO_POSITION = 1;” command

Slave1
Binary log
Executed_Gtid_set:

5ffd0c1b-cd65-12c4-21b2-ab91a9429562:1-400

Easy and error free!

Slave2

Binary log
Executed_Gtid_set:

5ffd0c1b-cd65-12c4-21b2-ab91a9429562:1-300 Slave3

Binary log
Executed_Gtid_set:

5ffd0c1b-cd65-12c4-21b2-ab91a9429562:1-500

Slide number 24 11/11/2013

Amazon Cloud-based HA Architecture

Regions and Availability Zones (AZ) (as of 07-24-2-12)

Country Region State/City AZ

USA US-West Oregon A,B

USA US-West California A,B,C

USA US-East Virginia A,B,C,D,E

Brazil San Paulo San Paulo A,B

Ireland EU Dublin A,B,C

Japan Asia-Pacific Tokyo A,B

Singapore Asia-Pacific Singapore A,B

Connection
points

Connectivity
Type

Average
Latencies[1], [2]

Region-to-
Another-Region

WAN 100 – 500 ms

AZ-to-Another-AZ LAN 10-50 ms

AZ-to-Same-AZ LAN 2 - 10 ms

 07-24-2012

Slide number 25 11/11/2013

Definition: RDS is instance of MySQL server running on an EC2 platform. Persistent storage (for back-ups, etc.) is
allocated in EBS volumes. However, neither can you access the underlying EC2 instance nor can you use S3 to
access your stored database snapshots. Since you do not get access to the native EC2 instance, you cannot install
additional software on the MySQL host.

Multi-AZ deployment - RDS automatically provisions and manages a “standby” replica in a different AZ. Database
updates are made synchronously on the primary and standby resources to prevent replication lag. In the event of
planned database maintenance, DB Instance failure, or an AZ failure, RDS automatically failovers to the up-to-date
standby so that database operations can resume quickly without administrative intervention. Prior to failover you
cannot directly access the standby, and it cannot be used to serve read traffic.

Read Replicas – You can create replicas of a given source DB Instance that serve high-volume application read
traffic from multiple copies of your data. RDS uses MySQL’s asynchronous replication to propagate changes made
to a source DB Instance to any associated Read Replicas.

Price: $0.4 - $0.8 per hour

Definition: EC2 instance is a server running MHS application using Amazon Machine Image (AMI) software.

Properties:
1.  The server can fail due to own hardware problems or due to AZ outage.
2.  Performance varies up to 60% between instance of the same type.

Price: depends upon instance type ($0.03 – 3.10 per hour)

2
5

Definition: Ephemeral or instance storage is the HDD or SSD directly attached to the EC2 instance (physical
node). This storage exists for every single EC2 instance even if it's not used

Performance: HDD – 0.1 ms, SSD 0.001 ms, no network latency

Properties:
1.  Good for short term persistence
2.  The fastest and the most predicable performance
3.  It is not shared with other instances
4.  Does not rely on network for its access
5.  After an accidental reboot, like power outage, the content of the storage remains intact and readily

available
6.  After shutdown the content of the storage no longer exists. Therefore it has to be copied periodically

to EBS or S3 to ensure long term persistence

Price: it comes completely free of charge including I/O operations.

12/5/12 6:52 PM

AWS Main Components

EC2 instance

AMI

Ephemeral
Storage

Directly attached

RDS
EC2 instance

EBS

MySQL Server

Network attached

Slide number 26 11/11/2013
2
6 12/5/12 6:52 PM

AWS Main Components (continued)

Definition: EBS provides block level storage volumes for use with EC2 instances. The volumes are network-
attached, and persist independently from the life of an instance that it is attached to

Performance: HDD – 0.1 ms; network latency – 2 ms

Properties:

1.  Good for short and medium term persistence
2.  The performance varies with out the Provisioned IOPS and Optimized instances (not all

instances)
3.  Throughput is hared with other instances
4.  Rely on network for its access
5.  After an accidental reboot, like power outage, the content of the storage remains intact.

However, the
 availability could be impacted by the network overloading with multi-tenant recoveries

EBS provisions a specific level of I/O performance by choosing a Provisioned IOPS volume. EBS volumes

are in one Availability Zone (AZ), and can only be attached to instances also in that same AZ. Each
storage volume is automatically replicated within the same AZ. EBS can create point-in-time snapshots
of volumes, which are persisted to S3.

CloudWatch shows performance metrics for EBS volumes: bandwidth, throughput, latency, and queue depth
.
Price: $0.10 per GB-month of provisioned storage; $0.10 per 1 million I/O requests

S3
Definition: S3 provides a simple web interface that can be used to store and retrieve any amount of data, at
any time, from anywhere on the web (multiple AZ storage). You can write, read, and delete objects containing
from 1 byte to 5 terabytes of data each. The number of objects you can store is unlimited. Each object is
stored in a bucket and retrieved via a unique, developer-assigned key.

Price: $0.1 GB/month

EBS

Slide number 27 11/11/2013

AWS Failure Modes and Effects [1]

Failure Mode Probability Mitigation Plan
Application Failure High Automatic degraded response

AWS Region Failure Low Wait for the region to recover

AWS Zone Failure Medium Continue to run on the remaining
zone

Data Storage Failure Medium Restore from S3 backup

S3 Failure Low Restore from remote archive
(disaster recovery)

Zone Failure Situations
1.  Power Outage

1.  Instances lost
2.  Ephemeral storage unavailable; readily available after power restoration
3.  EBS Storage unavailable; not readily available after power restoration

2.  Network Outage
1.  Instances unavailable
2.  Ephemeral storage unavailable
3.  EBS Storage unavailable; could be not readily available after network restoration

Region Failure Situations
1.  “Control Plane” for creating new instances failure [2]

1.  New instances could not be created
2.  Lost control of remaining zones infrastructure
3.  EBS Storage unavailable; not readily available after power restoration

2.  Network Outage
1.  Instances unavailable
2.  Ephemeral storage unavailable
3.  EBS Storage unavailable; could be not readily available after network restoration

[1] http://www.slideshare.net/adrianco/high-availability-architecture-at-netflix
[2] http://readwrite.com/2011/04/25/almost-as-galling-as-the#awesm=~ommLY1YhK9eiOz

Slide number 28 11/11/2013

Failover with GTID Replication and ZFS Snapshots

SSD

Node1 (Master)

Master Snap1
Slave

GTID Replication

Node2 (Slave)

Failover
Slave

GTID Replication

SSD

sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1

innodb_support_xa = 1
master_info_repisitory=TABLE

relay_log_info_repository = TABLE
log-slave-updates =TRUE

Snap2
Slave

GTID Replication

1) Service failures:
•  Node1 master process failure - service moves to node2
•  Node1 slave process failure – service restarts

2) Node failures:
•  node1 failure - services move to node2
•  node2 failure – restart node2

3) Network failures:
•  node1 network failure - services move to node2
•  node2 (slave) network failure – restart services

4) Server data corruption:
•  node1 master – get the snapshot from the snap slave
•  node2 master – get the snapshot from the snap slave

Failover cases

Availability Zone 1 Availability Zone 2

u  We use ZFS snapshots for the Master and Slave backups
u  We must have Slave node to make ZFS snapshots
u  Master server cannot stop without stopping all warehouse system

Application

Node3

ZFS ZFS

Slide number 29 11/11/2013

High-Level Block Diagram of the Demo Script
Start main script

1.  Verify initial conditions
2.  Destroy snapshot if exists
3.  Stop and cleanup the servers: slave, snap and master

4.  Start the servers: slave, snap and master
5.  Setup GTID replication from master to snap
6.  Setup GTID replication from master to main slave
7.  Initialized and start local application

8.  Prepare to take snapshot of the snap server
9.  Flush tables with read lock
10.  Take snapshot
11.  Unlock tables on the snap server

12.  Crash master
13.  Crash application
14.  Promote main slave to new master
15.  Restart application and point it to the new master

16.  Destroy local volume
17.  Send snapshot to the master to replace the original directory
18.  Delete old UUID from old master directory

19.  Demote old master to the new main slave
20.  Setup replication from new master to new slave

21.  Continue to run and finish application

Stop main script

Slide number 30 11/11/2013

Summary

•  MySQL replication is the most popular High Availability solution

•  To increase server availability MySQL team introduced new features

–  Global Transaction Identifiers (GTIDs)

–  Server UUIDs

–  Crush Safe Slaves and Binary Logs

–  Replication Events Checksum

•  New features increased availability and allowed automation of

Failover procedure

Slide number 31 11/11/2013

Backup

Slide number 32 11/11/2013

Number of fixed bugs in MySQL 5.5 and 5.6 releases

•  First production release for MySQL 5.6.10 had 40% more bugs than first production release of MySQL 5.5.9
•  The number of bugs for subsequent release of MySQL 5.6 was significantly higher than for production release. In

case of 5.5 the situation was different
•  The number of bugs in 5.6. is still significantly higher than for similar situation with 5.5

Slide 33 11/11/2013

Number of new/changed features in releases

The number of improvements for subsequent release of MySQL 5.6 was very similar to MySQL 5.5
subsequent releases

Slide 34 11/11/2013

Replication Binary Log Coordinates
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 127.0.0.1
 Master_User: msandbox
 Master_Port: 26768
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001 (IO Thread reads this file)
 Read_Master_Log_Pos: 4723 (Position in master binary log file where IO Thread has read to)
 Relay_Log_File: mysqld-relay-bin.000001
 Relay_Log_Pos: 874 (Position in the relay log file where SQL thread read and executed events
 Relay_Master_Log_File: mysql-relay-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
.:
Last_Errno: 0 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 729 (Position in master binary log file that SQL Thread read and executed up to
 Relay_Log_Space: 1042 The total combined size of all existing relay log files
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
.: . . .
Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
1 row in set (0.00 sec)

Coordinates usage examples:
Connect to the master using master’s binary log
slave> CHANGE MASTER TO
MASTER_HOST='12.34.56.789',MASTER_USER='slave_user',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=4723;

Connect to the new master/old slave using slave’s relay log
slave> CHANGE MASTER TO
MASTER_HOST='12.34.56.789',MASTER_USER='slave_user',
MASTER_PASSWORD='password',
MASTER_LOG_FILE='mysql-relay-bin.000001', MASTER_LOG_POS=729; Master Slave1

Slave2

Master Slave1

Slave2

Crashed!

Failover

Slide number 35 11/11/2013

What is the Kiva Mobile-Robotic Fulfillment System?

Maintenance
Manager

Plant
 Manager

Product
Manager

Admin
 Manager

ERP WMS OMS Others

Kiva uses hundreds of mobile robotic drive units to bring inventory on mobile shelves directly to workers, allowing access to
all inventory items at all times

Kiva software is integrated with the client's enterprise systems, including: warehouse management systems (WMS), order
management systems (OMS), and enterprise resource planning systems (ERP)

St
at

io
n

A
ge

nt
s

API

Drive Unit Agents

C
lie

nt
 A

ge
nt

s

Core Local Software

Equipment
Control

Transaction
Processing

Inventory
Management

Core Local Hardware

Internet Order Fulfillment Operation is the core of Amazon business

u  Current Kiva software runs locally
u  Database server HA provided by the local SAN storage and RedHat Cluster

How to provide Database Server High Availability when Kiva software and hardware
run in the Cloud?

Slide number 36 11/11/2013

RedHat Cluster and Master/Slave Nodes

Master Snap1
Slave

Node2 (Slave) Node1 (Master)

Failover
slave

Snap2
Slave

RedHatCluster

Service – master [status|start|stop] Service – slave [status|start|stop]

ZFS ZFS

RedHat Cluster monitors Master and Slave processes on Master and Slave nodes

u  We use ZFS snapshots for the Master and Slave backups
u  We must have Slave node to make ZFS snapshots
u  Master server cannot stop without stopping all warehouse system

Slide number 37 11/11/2013

Cloud HA Solution with GTID Replication

node1

Master snap
GTID

Replication
(port=3306)

Main master
Database

Snap slave
Database

node2

Main master Master snap
port=3306 port=3307

Main master-slave GTID replication (port=3306)

SSD1

node2 State File node1 State File

heartbeat
RedHat Cluster RedHat Cluster

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot
ZFS: Send

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot
ZFS: Send

Main master
Database

Snap slave
Database

Slave snap
GTID

Replication
(port=3306)

Main slave Slave snap
port=3306 port=3307

SSD2

Slide number 38 11/11/2013

Cloud HA Solution with GTID Replication

node1

Master snap
GTID

Replication
(port=3306)

Main master
Database

Snap slave
Database

node2

Main master Master snap
port=3306 port=3307

Main master-slave GTID replication (port=3306)

SSD1

node2 State File node1 State File

heartbeat
RedHat Cluster RedHat Cluster

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot
ZFS: Send

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot
ZFS: Send

Main master
Database

Snap slave
Database

Slave snap
GTID

Replication
(port=3306)

Main slave Slave snap
port=3306 port=3307

SSD2

Slide number 39 11/11/2013

Services, Nodes, Network and Corruption Failover Scenarios

1) Service failures:
•  node1 real service failure - service moves to node2
•  node2 res service failure - service moves to node3
•  node1 arch service failure – service moves to node3
•  node3 (slave) service failure – service restarts
•  node3 (master) service failure – service moves to node2 or node1

2) Node failures:
•  node1 failure - services move to node2 and node3
•  node2 failure - services move to node3
•  node3 (slave) failure – restart node3
•  node3 (master) failure – services move to node1 or node2

3) Network failures:
•  node1 network failure - services move to node2 and node3
•  node2 network failure - services move to node3
•  node3 (slave) network failure – restart services
•  node3 (master) network failure – services move to node2 or node3

39

node1 node2 node3

‘real’
service

‘res’
service

‘arch’
service

failover

failover

failover

RedHat Cluster

4) Server data corruption:
•  node1 master – get the snapshot from the snap slave
•  node2 master – get the snapshot from the snap slave
•  node3 master – get the snapshot from the snap slave

Services

Slide number 40 11/11/2013

Master

Snap1
Slave

R
ep

lic
at

io
n

General Architecture of the System Failover

SSD

node1

Master Snap1
Slave

GTID Replication

node2

Failover
Slave

GTID Replication

SSD

ZFS snapshots acquisition using snap slave on node1

sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1

innodb_support_xa = 1
master_info_repisitory=TABLE

relay_log_info_repository = TABLE
log-slave-updates =TRUE

Failover
Slave

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

R
ep

lic
at

io
n

Application
Snap2
Slave

GTID Replication

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

Snap2
Slave

ZFS Snapshot ZFS Snapshot

R
ep

lic
at

io
n

Slide number 41 11/11/2013

Master

Snap1
Slave

R
ep

lic
at

io
n

Master (node1) works with snap slave(node1) and failover slave(node2)

Failover
Slave

ZFS Snapshot ZFS Snapshot

sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1
innodb_support_xa = 1
master_info_repisitory=TABLE
relay_log_info_repository = TABLE
log-slave-updates =TRUE

R
ep

lic
at

io
n

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

Master
crashes

node1

node2

Master works with snap slave and failover slave:
1.  Snap1 slave and failover slave replicate from the master
2.  Snap1 slave takes ZFS snapshots every minute
3.  Failover slave has ZFS snapshots every few hours
4.  Master has ZFS snapshot every few days
5.  Snap2 slave takes ZFS snapshots every minute (symmetrical to snap1)

1 min 1 min 1 min

ZFS Snapshot

sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1
innodb_support_xa = 1
master_info_repisitory=TABLE
relay_log_info_repository = TABLE
log-slave-updates =TRUE

sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1
innodb_support_xa = 1
master_info_repisitory=TABLE
relay_log_info_repository = TABLE
log-slave-updates =TRUE

Snap2
Slave

R
ep

lic
at

io
n

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot
sync_binlog = 1
sync_master_info = 1
sync_relay_log = 1
innodb_support_xa = 1
master_info_repisitory=TABLE
relay_log_info_repository = TABLE
log-slave-updates =TRUE

1 min 1 min 1 min

Slide number 42 11/11/2013

crash

Slave

Recovery after master (node1) failure: node1 continues to work, failover slave works
as master

R
ep

lic
at

io
n

Master
ZFS Snapshot

ZF
S

 s
na

ps
ho

t

Master
crashes

node1

node2

Failover steps in case of the master crash:
1.  Master crashes, but the node1 continues to work
2.  Application redirected to node2 and failover slave becomes new master
3.  The latest ZFS snapshot replaces old master data directory
4.  Snap1 slave replicates from node2 catching up with new master
5.  Snap2 slave continues to get replicated data from new master

1 min 1 min 1 min 1 min

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

1 min

Snap2
Slave

R
ep

lic
at

io
n

1 min 1 min 1 min 1 min

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

1 min

Slide number 43 11/11/2013

New snap
slave

Slave

Recovery after master (node1) failure, node1 continues to work, failover slave works
as master

Master

ZFS Snapshot

R
ep

lic
at

io
n

node1

node2

Recovery steps in case of the master crash:
1.  Old master recovers, and catches up with new master using data from old snap1 slave
2.  Old snap1 slave becomes new failover slave
3.  Old master becomes new snap1 slave making frequent ZFS snapshots
4.  In case of new master crash new failover slave becomes new master
5.  node2 supposed to have the same architecture as node1 with node2 snap slave

1 min 1 min 1 min 1 min

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

1 min

Snap2
Slave

R
ep

lic
at

io
n

1 min 1 min 1 min 1 min

ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot ZFS Snapshot

1 min

ZFS Snapshot

Slide number 44 11/11/2013

Backup

Slide number 45 11/11/2013

Backup

Slide number 46 11/11/2013

Replication Data Files
Line

SHOW SLAVE STATUS

Column Description

1 Number of lines in the file

2 Master_Log_File The name of the master binary log currently being read from the master

3 Read_Master_Log_Pos The current position within the master binary log that have been read from the
master

4 Master_Host The host name of the master

5 Master_User The user name used to connect to the master

6 Password (not shown by
SHOW SLAVE STATUS) The password used to connect to the master

7 Master_Port The network port used to connect to the master

8 Connect_Retry The period (in seconds) that the slave will wait before trying to reconnect to the
master

9 Master_SSL_Allowed Indicates whether the server supports SSL connections

10 Master_SSL_CA_File The file used for the Certificate Authority (CA) certificate

11 Master_SSL_CA_Path The path to the Certificate Authority (CA) certificates

12 Master_SSL_Cert The name of the SSL certificate file

13 Master_SSL_Cipher The list of possible ciphers used in the handshake for the SSL connection

14 Master_SSL_Key The name of the SSL key file

15 Master_SSL_Verify_Server_Cert Whether to verify the server certificate

17 Replicate_Ignore_Server_Ids The number of server IDs to be ignored, followed by the actual server IDs

Line

SHOW SLAVE STATUS
Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file; events up to this position have been executed on the slave database

3 Relay_Master_Log_File The name of the master binary log file from which the events in the relay log file were read

4 Exec_Master_Log_Pos The equivalent position within the master's binary log file of events that have already been executed

Slide number 47 11/11/2013

How Replication Worked Before 5.6?

Slide number 48 11/11/2013

How Replication Worked Before 5.6?

