

04/12/11 1

Configuring MySQL for Optimal Performance

Presented by:

Sheeri K. Cabral

Database Operations Manager, PalominoDB

www.palomionodb.com @sheeri

http://bit.ly/iiKjoJ

Ask how many are using Windows
Ask how many are using in production
Ask how many aren't using
Ask how many are using 5.1 vs. 5.5 vs older

2

For Optimal Performance

! Server tuning

! Schema optimization

! Query tuning

Server tuning is mostly variables, and that's what we're
going through here today.

3

MySQL Change History
http://dev.mysql.com/doc/refman/5.5/en/news.html

Are you using an old version?

Many bugs are changed in each version. Show some
pages and explain how to upgrade

You can substitute manual pages with 5.1 if you're on
5.1. If you're on 5.0 or earlier DEFINITELY
UPGRADE.

4

Directories

! basedir

! datadir

! tmpdir
! /tmp

Basedir = installation directory
$basedir/bin
$basedir/data is default datadir

Datadir – where data is kept by default, innodb data files by
default, binary logs by default.

Tmpdir – temporary files opened by mysql, like for replication
or temporary intermediate files (not temporary for alter
table, or those are in $datadir). Faster if local, be careful of
memory-backed, because replication depends on it.

If TMPDIR is not set, MySQL uses the system default, which
is usually /tmp, /var/tmp, or /usr/tmp on Unix, and on
windows, in order TMPDIR, TEMP, and TMP environment
variables, or finally Windows system default, which is
usually C:\windows\temp\.

The --tmpdir option can be set to a list of several paths that
are used in round-robin fashion. Paths should be
separated by colon characters (“:”) on Unix and semicolon
characters (“;”) on Windows.

5

What is a MySQL Database?

It's just a directory!

6

MySQL Files

! my.cnf / my.ini config
! Per-database

! db.opt
! .TRN .TRG

! .frm
! Log information

db.opt, one per database, has default charset and
collation info for the database in $datadir

.TRG one per table, .TRN one per trigger. Can have
up to 6 triggers per table. .TRG is read on every
DML, references any TRN that needs to be done.

.frm files have the table structure, one per table, so if
you have thousands of tables this can be a problem.

The master.info and relay-log.info files are written to a
LOT.

7

Mounting

noatime
nodiratime

Otherwise access time for file and directories is saved

Ext3 supports both, so does XFS

Nobarrier?

ReiserFS (notail)

Does not affect last modified time

8

Storage Engine Files

! InnoDB
! ibdata, .ibd
! iblogfiles

! MyISAM
! .MYI
! .MYD

CSV has .frm and .CSM .CSV
Blackhole has .frm only
Archive has .frm and .ARV
Others may have different layouts all together, like

TokuDB, which has a directory per table, but still a
.frm file.

9

MySQL Variables

! system_variable
! SHOW GLOBAL|SESSION VARIABLES [LIKE...]
! SELECT @@global|session.varname

! Status_variable
! SHOW GLOBAL|SESSION STATUS [LIKE...]

Note caps vs. no caps

Show variables and status in demo

10

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 45 |
+---------------+-------+
1 row in set (0.00 sec)

mysql> SHOW SESSION STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 0 |
+---------------+-------+
1 row in set (0.00 sec)

Show variables and status in demo

Then show these GLOBAL variables:

table_open_cache

Open_tables

11

File Descriptors

! table_open_cache

! Open_tables

! Opened_tables

Open_tables is how many are currently open

Opened is how many opened since opened. FLUSH
STATUS does not clear this value.

if Opened_tables increases rapidly, the
table_open_cache should be increased (if possible).

12

OPEN FILES
LIMIT

1024
ulimit

File descriptor usage is one of the reasons that
mysqld_safe is started as root and mysqld is
spawned from that, so it inherits the limits.

13

File Descriptor Usage

! Open_files

! Opened_files

! open_files_limit

open_files_limit can be set, but the server-reported
value is the # of files the OS allows MySQL to open.
If 0, MySQL can't set this value.

Not really anything to optimize here, just knowledge of
how many files have used a certain library call
(my_open) to open a file.

Open_files shouldn't be close to open_files_limit

14

DELAYED keyword is ignored on InnoDB; basically just
a way to get around table-level locking on MyISAM
tables. This is not durable (“D” in ACID compliant)

INSERT DELAYED will batch-write INSERTS once a
certain # are accumulated. This goes faster, but has
many implications.

15

INSERT DELAYED
! delayed_insert_limit
! delayed_insert_timeout
! delayed_queue_size
! max_delayed_threads

! Delayed_insert_threads

delayed_insert_limit: When doing a bulk insert from
INSERT DELAYED, process any SELECTs after this
many records have been inserted (default 100)

delayed_insert_timeout: How long the handler waits
for another INSERT DELAYED before terminating
(default 300, seconds)

delayed_queue_size: Per-table queue size for
INSERT DELAYED. If this fills, an INSERT
DELAYED statement will “hang”. (default 1000)

max_delayed_threads: Max # of threads to handle
INSERT DELAYED. If all threads are in use, further
INSERT DELAYED statements ignore DELAYED.
Thus, 0 disables DELAYED.

max_insert_delayed_threads – same as
max_delayed_threads

Delayed_insert_threads: How many handler threads
are in use

16

INSERT DELAYED

! Delayed_writes

! Delayed_errors

! Not_flushed_delayed_rows

DELAYED keyword is ignored on InnoDB; basically just
a way to get around table-level locking on MyISAM
tables. This is not durable (“D” in ACID compliant)

max_delayed_threads 20 by default

Delayed_insert_threads – how many threads are
currently running

_writes, _errors are counters (sum)

Last is # rows waiting to be written. This would be
what you'd lose in a crash!

17

InnoDB Flags
! innodb_file_per_table

! innodb_flush_log_at_trx_commit

! innodb_fast_shutdown

InnoDB is the ACID compliant transactional db

Can make it not ACID compliant!

innodb_flush_log_at_trx_commit
0 = log buffer written once per second and flushed
1 = log buffer written at each commit, flush to disk
2 = log buffer written at each commit, flush to disk once per second

fast_shutdown
0 = full purge, insert buffer merge before shutdown. can take a long

time.
1 = skips at shutdown
2 = flushes logs and shuts down cold, as if a crash. No commit txn

will be lost, but crash recovery will be done on startup.

18

InnoDB Buffer Pool
! innodb_buffer_pool_size

! innodb data/index cache
! Innodb_page_size
! Innodb_buffer_pool_pages_total

! Innodb_buffer_pool_pages_data
! Innodb_buffer_pool_pages_free
! Innodb_buffer_pool_pages_misc

misc pages are pages used for admin overhead, ie row
locks & adaptive hash

19

Dirty Pages
! innodb_max_dirty_pages_pct

! Innodb_buffer_pool_wait_free

! Innodb_buffer_pool_pages_dirty

!innodb_max_dirty_pages_pct
! after this % is reached, wait while dirty pages are

flushed to disk

!Innodb_buffer_pool_wait_free
wait free is a counter for the # of times the buffer pool

had to wait for pages to be freed by cleanup

!Innodb_buffer_pool_pages_dirty
! Included in the pages_data
!

!

20

InnoDB Concurrency Variables
! innodb_thread_concurrency

! innodb_commit_concurrency

! innodb_concurrency_tickets

! innodb_sync_spin_loops

innodb_thread_concurrency – Max value=1000. 0
disables the checking of thread concurrency. After x
OS threads are in innodb, any more are put into a
waiting queue. (16)

innodb_commit_concurrency – 0 is for “unlimited”
(default=0?)

innodb_concurrency_tickets – # times a thread can
enter InnoDB without having to be queued if the
threads exceed the value of
innodb_thread_concurrency (500)

sync_spin_loops – how many times to wait for a mutex
to be freed before suspending the thread (20)

21

InnoDB Log Basics

! innodb_log_file_size

! innodb_log_files_in_group
! innodb_mirrored_log_groups

! innodb_log_group_home_dir

22

InnoDB I/O
! innodb_io_capacity

! innodb_read_io_threads

! innodb_write_io_threads

(InnoDB Plugin only) The maximum number of I/O operations per second

that InnoDB will perform. This variable can be set at server startup, which

enables higher values to be selected for systems capable of higher I/O rates.

Having a higher I/O rate can help the server handle a higher rate of row

changes because it may be able to increase dirty-page flushing, deleted-row

removal, and application of changes to the insert buffer. The default value of

innodb_io_capacity is 200. In general, you can increase the value as a

function of the number of drives used for InnoDB I/O.

The ability to raise the I/O limit should be especially beneficial on platforms

that support many IOPS. For example, systems that use multiple disks or

solid-state disks for InnoDB are likely to benefit from the ability to control this

parameter.

read_io & write_io threads = 4 by default.

23

InnoDB Logs

! innodb_log_buffer_size
! Innodb_log_waits

innodb_log_buffer_size – “sensible values range from
1Mb – 8Mb” according to the manual. “A large log
buffer allows large transactions to run without a need
to write the log to disk before the transactions
commit. Thus, if you have big transactions, making
the log buffer larger saves disk I/O.”

If log_buffer_size too small, there will be
Innodb_log_waits

24

Other InnoDB Variables
! innodb_additional_mem_pool_size (16Mb)

! innodb_open_files (300)

! innodb_thread_sleep_delay (10,000 = .01 sec)

additional_mem_pool_size – additional memory for
things like the data dictionary. If this value is too
small, warnings will be written to the error log and
more memory will be allocated from the OS. Default
is 1 Mb.

innodb_open_files – file descriptors for .ibd files. do
not affect table_open_cache, variable is independent
of other open files limits.

innodb_thread_sleep_delay – how long
(microseconds) a thread waits before joining the
InnoDB queue, 10,000 = 0.1 sec

25

Advanced InnoDB Variables

! innodb_flush_method

! innodb_max_purge_lag

fsync() by default to flush data files & logs
O_DSYNC = O_SYNC to open and flush logs, fsync()

for data files.
O_DIRECT (some GNU/Linux versions, FreeBSD, and

Solaris), O_DIRECT (or directio() on Solaris) to open
the data files, fsync() to flush data files and logs.

This variable is relevant only for Unix. On Windows,
the flush method is always async_unbuffered and
cannot be changed.

purge lag = if # of txns that UPDATE or DELETE is >
this, then delay a while before proceeding. 0 means
no delay ever.

26

InnoDB Status for Performance

! Innodb_buffer_pool_read_ahead_rnd

! Innodb_buffer_pool_read_ahead_seq

Innodb_buffer_pool_read_ahead_rnd:
Number of random read-aheads, for when a large part

of the table is scanned, in random order

Innodb_buffer_pool_read_ahead_seq: Number of
sequential read-aheads, for sequential full table scan

High rates of these are both bad, change queries.

27

Bad Handler Status

! Handler_read_first

! Handler_read_rnd
! read_buffer_size

! Handler_read_rnd_next

Handler_read_first: Usually indicates full index scans

Handler_read_rnd: # requests to read a data row
based on a fixed position; high if lots of sorting, full
table scans, ie when joins aren't using keys

read_buffer_size - Memory allocated for each scan of
each table that is done. Multiple of 4096.

Handler_read_rnd_next: read the next data row;
indicative of full table scans, or otherwise not using
indexes that exist.

28

Good Handler Status

! Handler_read_key

! Handler_read_next

! Handler_read_prev

Handler_read_key: # of read requests that use a key.
High = good

Handler_read_next: incremented for each row in an
index scan or range query (not necessarily good or
bad, just info)

Handler_read_prev: Mostly used in ORDER
BY...DESC, same as Handler_read_next but for
“previous”

29

Non-InnoDB Disk I/O

! flush

! flush_time

!flush (OFF)
! Sync changes to disk after every SQL statement
! If ON, write changes to disk; let OS handle sync

!flush_time (0)
! Close tables and sync data to disk every x seconds
! 0 = disabled
! Enable for systems with very few resources

30

Query Cache
! query_cache_type

! have_query_cache

! query_cache_size
! Qcache_total_blocks
! Qcache_free_blocks
! Qcache_free_memory

! Qcache_queries_in_cache

Type ON, have_query_cache YES
query_cache_size 128M, total = 64,428, free=15,348,

free_mem=44.1M, queries in cache=20,536
for info: http://dev.mysql.com/doc/refman/5.1/en/query-cache-

configuration.html

query_cache_limit max size of a resultset that can be cached.
approx memory size needed for each query cached is 3 blocks.

query_cache_size 0 disables the query cache; values are multiples
of 1024. Amount of memory allocated for the query cache (even if
query_cache_type is 0/OFF)

query_cache_type: 0/OFF means don't use the query cache (though
the buffer is still created). 1/ON means cache all queries that can
be cached (SELECT SQL_NO_CACHE can be used on individual
queries not to cache), 2/DEMAND means only cache those that
use SELECT SQL_CACHE.

31

Query Cache Usage

! query_cache_limit

! Qcache_not_cached

! Qcache_lowmem_prunes

query_cache_limit
4194304
max size of a resultset that can be cached.

Qcache_hits

Qcache_inserts

Qcache_lowmem_prunes
! Defragment with FLUSH QUERY CACHE
! query_cache_min_res_unit (4096) can be

decreased if results are very small

Qcache_not_cached – due to SQL_NO_CACHE or
results bigger than query_cache_limit

32

Query Cache Usage

! Qcache_hits

! Qcache_inserts

! Com_select

com_select is not incremented when query cache is hit

query cache hit % = Qcache_hits/
(Qcache_hits+Com_select)*100

33

Query Cache
Domas Mituzas' query cache tuning guide:

! http://dom.as/tech/query-cache-tuner/

Type ON, have_query_cache YES
query_cache_size 128M, total = 64,428, free=15,348,

free_mem=44.1M, queries in cache=20,536
for info: http://dev.mysql.com/doc/refman/5.1/en/query-cache-

configuration.html

query_cache_limit max size of a resultset that can be cached.
approx memory size needed for each query cached is 3 blocks.

query_cache_size 0 disables the query cache; values are multiples
of 1024. Amount of memory allocated for the query cache (even if
query_cache_type is 0/OFF)

query_cache_type: 0/OFF means don't use the query cache (though
the buffer is still created). 1/ON means cache all queries that can
be cached (SELECT SQL_NO_CACHE can be used on individual
queries not to cache), 2/DEMAND means only cache those that
use SELECT SQL_CACHE.

34

Timeouts

! back_log

! net_read_timeout
! net_retry_count

! net_write_timeout

back_log=size of TCP listen queue, how many
outstanding requests MySQL can have before it
stops answering new requests (50)

net_read_timeout, net_write_timeout – only for TCP
connections (30,10?)

net_retry_count is for interrupted read connections
(60).

35

More Timeouts

! connect_timeout

! wait_timeout

! interactive_timeout

Increasing the connect_timeout value might help if
clients frequently encounter errors of the form Lost
connection to MySQL server at 'XXX', system error:
errno. If this is too low, Aborted_connects status
variable will be higher (but is not the only reason)

wait_timeout is how long to wait before killing sleeping
non-interactive timeouts.

10 for connect_timeout

Wait and interactive timeout default is 28800, 8h.

36

Threads

! Threads_created

! Threads_cached
! thread_cache_size

threads created, if this is rapidly increasing, increase
thread_cache_size. Cache miss rate =
threads_created/Connections

Threads_cached = # threads currently in thread cache

37

When a thread is slow to launch

! slow_launch_time

! Slow_launch_threads

slow_launch_threads is incremented if it takes longer
than slow_launch_time seconds to launch a thread.
thread_cache should be in play anyway. This isn't
really a timeout. I've never seen a value >0 of
slow_launch_threads

38

MyISAM Key Cache
! Can have more than one

! CACHE INDEX IN

! key_buffer_size

! key_cache_block_size

key_buffer_size, key_cache_block_sizecan be set per
named cache using SET GLOBAL
cachename.variable=value, ie

SET GLOBAL session.key_buffer_size=10240;

39

MyISAM Key Cache

! Uses LRU; hot/warm sub-chains

! key_cache_age_threshold

! key_cache_division_limit

key_cache_division_limit and key_cache_age_threshold can
be set per named cache using SET GLOBAL
cachename.variable=value.

age_threshold = how fast something gets demoted from “hot”
to “warm” sub-chain

division_limit – % of key cache to use in warm (vs. hot) sub-
chain of the cache

40

MyISAM Key Cache Sizing
! Percentage used for all key caches:

! 1 – (Key_blocks_unused * key_cache_block_size) /
key_buffer_size)

! Key_blocks_used

! Key_blocks_not_flushed

!Key_blocks_used
! max used at any time

41

MyISAM Key Cache Efficiency
! Cache miss %

! Key_reads (from disk) / Key_read_requests * 100

! Key_write_requests

! Key_writes

This slide and the next slide were switched in the slide decks
you have.

42

MyISAM Key Cache Efficiency
! Cache miss %

! Key_reads (from disk) / Key_read_requests * 100
! 34 / 254122*100 = 0.01 %

! Key_write_requests (10)

! Key_writes (10)

43

Logs

! log_output (FILE,TABLE)

44

General Log

! general_log
! log

! sql_log_off (session)

SET SESSION sql_log_off=ON by a user with the
SUPER privilege to not log anything to the general
log. Off by default.

45

Slow Query Log
! slow_query_log

! log_slow_queries

! slow_query_log_file

! Slow_queries

46

What gets logged as a slow query

! long_query_time

! log_queries_not_using_indexes

! min_examined_row_limit

long_query_time in seconds, can be fractional or 0.

47

Error Logging

! log_error

! log_warnings (1)
! sql_notes (ON)

sql_notes is equivalent to log_warnings, except for
notes, and it's a session variable only. On by default

48

Binary Logging
! log_bin

! sql_log_bin, sql_log_update

! max_binlog_size
! binlog_format

! expire_logs_days

binlog_format
! mysqlbinlog --base64-

output=DECODE-ROWS
!

!

! SET SESSION sql_log_bin=OFF if you don't want
to log the current session to the binary log. For
example, FLUSH commands, making data
changes that shouldn't replicate (ie, if sync'ing).

49

Binary Log Cache

! binlog_cache_size

! Binlog_cache_use

! Binlog_cache_disk_use

I don't think I've ever tuned this

50

Replication and Binary Logging
! log_slow_slave_statements

! log_slave_updates

! sync_binlog

! sync_frm

server_id is the unique ID of the server; a slave does
not apply binary log entries with its own ID. This is
how infinite loops are avoided in replication (though
you can make one happen accidentally if you change
the server_id on a slave that is not caught up).

sync_binlog will use fdatasync every x writes to the
binary log. Slowest choice (if battery-backed write
cache, not as slow), but also safest. Default is 0,
which means rely on the OS to flush to disk.

sync_frm set to ON means that non-temporary tables
have their .frm file sync'd to disk with fdatasync on
table create.

51

Temporary Tables
! Per-thread

! tmp_table_size
! max_heap_table_size

! Created_tmp_tables
! Created_tmp_disk_tables

if created_tmp_disk_tables is too big, maybe increase
tmp_table_size & max_heap_table_size

52

Memory Settings
(not storage engine dependent)

! join_buffer_size

! read_rnd_buffer_size

! max_prepared_stmt_count

! preload_buffer_size

read_rnd_buffer_size - Per-client buffer used in sorting
when an index is present. Larger values can
improve ORDER BY and GROUP BY, but it's per-
client, so be careful. Best to increase this value by
session, not globally, if you can.

join_buffer_size = 1 buffer for each FULL join of 2
tables. a 3-way join has to join buffers. This is
ONLY used if there are no indexes on one table and
a full table scan has to be done.

max_prepared_stmt_count - Limit is so a DOS can't
occur, 0 disables prepared statements. Prepared
statements take up memory.

preload_buffer_size (32768)
Buffer size allocated when pre-loading indexes

53

Memory Settings
(not storage engine dependent)

! query_alloc_block_size

! query_prealloc_size

! thread_stack

query_alloc_block_size= size of memory allocation for
objects during parse and execute query stages. If
memory is fragmented, increasing this can help

query_prealloc_size = The size of the persistent buffer
used for statement parsing and execution. This buffer
is not freed between statements. If you are running
complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because
it can reduce the need for the server to perform
memory allocation during query execution
operations.

Minimum size of persistent buffer for parse and
execute query stages. Persistent, so a larger value
may improve performance if there are frequent
memory allocations.

thread_stack = Per-thread stack size

54

Table Definition Cache

! table_definition_cache

! Open_table_definitions

! Opened_table_definitions

table_definition_cache – larger value speeds up the
time it takes to open a table; does not use file
descriptors and takes up less space than
table_open_cache. (Slide 44 has
table_open_cache)

Usually large “Opened” value means you need to
increase the cache, or actually changing table
definitions.

55

Sorting Status Variables
! Sort_range

! Sort_rows

! Sort_scan

Sort_range = # sorts done using ranges

Sort_rows = # sorted rows

Sort_scan = # sorts done using full table scan

56

Sorting System Variables
! sort_buffer_size

! Sort_merge_passes

! max_sort_length

Sort_merge_passes = # of sort merge passes. If large,
consider increasing sort_buffer_size

max_sort_length = maximum for TEXT/BLOB types

57

Join Buffer
! join_buffer_size

! Select_full_join

! Select_scan

Select_full_join = #joins that did full table scans b/c
they didn't use indexes.

Select_scan = # joins that did a full table scan on the
first table (not both tables). High # is bad, not as bad
as Select_full_join, but still not so good...find in slow
query log using “log queries not using indexes”. (I
think).

58

Joining
! max_join_size

! sql_big_selects

! Select_range_check

max_join_size = if more than this many rows need to
be examined, don't allow this statement to proceed.
Basically this tries to avoid runaway queries.

sql_big_selects = SELECT statements >
max_join_size are aborted if set to 0. 1 by default,
which is all selects are allowed. If max_join_size is
changed from the default, sql_big_selects is
automatically set to 0. If max_join_size is then
changed (ie, in session) then sql_big_selects is
ignored.

Select_range_check = # joins w/out keys that check for
key usage after each row. Worry if >0, check
indexes in tables.

59

Join Status Variables

! Select_full_range_join

! Select_range

Select_full_range_join = # joins that used a range
search (good, uses indexes).

Select_range = # joins that used a range search on the
1st table only (good, uses indexes). The 2nd table
may have used exact match, no index, etc. so it's
hard to tell if that means the 2nd table is bad or not.

60

Optimizer

! optimizer_prune_level

! optimizer_search_depth

! optimizer_switch

optimizer_prune_level (1)
0 disables, so exhaustive search. 1, plans are pruned

based on # of rows retrieved by intermediate plans.
optimizer_search_depth (62)
max search depth of optimizer. If ># tables in the

query, slower to find the plan but gets a better plan.
If <# tables in the query, quick to find a plan but it
may be suboptimal. If 0, system picks a
“reasonable” value. If set to max tables in query +2,
uses 5.0 algorithm.

optimizer_switch (5.1.34, not PFM)
Globally or per-session, can set index_merge={on|off},

index_merge_intersection={on|off},
index_merge_union={on|off},
index_merge_sort_union={on|off}

61

Optimization
! max_seeks_for_key

! range_alloc_block_size

! sql_select_limit

! Last_query_cost

max_seeks_for_key = Limit assumed max number of
seeks when looking up rows based on an index. The
MySQL optimizer assumes that no more than this
number of key seeks are required when searching
for matching rows in a table by scanning an index,
regardless of the actual cardinality of the index. By
setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

range_alloc_block_size = block size allocated when
range optimization is done

sql_select_limit = Max # of rows to return from a
SELECT query (not applied to SELECTs within
stored procedures, or SELECT queries where result
set is returned, as in CREATE TABLE...SELECT and
INSERT INTO...SELECT)

Last_query_cost = 0 for “complex” like UNION and
subquery, because it can't be calculated
appropriately. Session variable, default 0

62

Locking Status Variables
! Table_locks_immediate

! Table_locks_waited

! Com_lock_tables

! Com_unlock_tables

Table_locks_immediate
times a table lock request was granted immediately

Table_locks_waited
times a table lock request had to wait (big # is a

problem)

Com_lock_tables

Com_unlock_tables

63

Locking System Variables

! sql_buffer_result

! low_priority_updates
! sql_low_priority_updates

! max_write_lock_count

sql_buffer_result (OFF)
If ON, forces results to be stored in temp tables,

releases locks earlier than if not enabled. Session
variable only. Useful for, say, if it takes a long time
for a result to be sent to a client.

low_priority_updates (OFF) If on, writes are lower
priority than reads for table-level locking tables. ie,
MyISAM, not InnoDB. called
sql_low_priority_updates before, both show up in
SHOW GLOBAL VARIABLES currently.

max_write_lock_count (4,294,967,295)
After this many write locks, allow a read lock. Basically

by default writes are higher priority than reads, but if
you want x writes to happen, then allow a read, set
this variable.

64

MyISAM-specific

! concurrent_insert

! delay_key_write

! keep_files_on_create

ALSO - (sql_)low_priority_updates from slide 100

concurrent_insert. 1=default, concurrent_insert if no
fragmentation. 2, concurrent_insert even with
fragmentation. 0 = no concurrent insert.

delay_key_write ON=default, key buffer not flushed for
tables created with DELAY_KEY_WRITE keyword.
Other values = OFF and ALL, which treats all
MyISAM tables as having DELAY_KEY_WRITE on.

keep_files_on_create = overwrite existing MYI and
MYD files when a .frm file isn't present. Set to on or
always explicitly use INDEX_DIRECTORY and
DATA_DIRECTORY to not overwrite MYI and MYD
files. If a .frm file is present, mysqld returns an error
that the table exists.

65

MyISAM-specific

! myisam_data_pointer_size

! myisam_stats_method

! myisam_use_mmap

myisam_data_pointer_size = The default pointer size in bytes, to be
used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than
2 or larger than 7. The default value is 6. A value of 4 allows tables
up to 4GB; a value of 6 allows tables up to 256TB. If you get
“Table is full” you may need to increase this, or set MAX_ROWS
when doing CREATE TABLE.

myisam_stats_method = How the server treats NULL values when
collecting stats about distribution of index values for MyISAM
tables. Values are: nulls_equal all NULL index values are
considered equal and form a single value group that has a size
equal to the number of NULL values

nulls_unequal NULL values are considered unequal, each NULL
forms a distinct value group of size 1.

nulls_ignored, NULL values are ignored.

myisam_use_mmap = added in 5.1.4, use memory mapping for
reading/writing MyISAM tables.

66

Repairing MyISAM Tables

! myisam_recover_options

! myisam_repair_threads

recover_options=recovery mode. Values = any combination of the values of
DEFAULT, BACKUP, FORCE, or QUICK, separated by commas. Specifying
with no argument is the same as specifying DEFAULT, and specifying with
an explicit value of "" disables recovery (same as not giving the option).

If recovery is enabled, each time mysqld opens a MyISAM table, it checks
whether the table is marked as crashed or wasn't closed properly. If this is
the case, mysqld runs a check on the table. If the table was corrupted,
mysqld attempts repair.

The following options affect how the repair works:
BACKUP If the data file was changed during recovery, save a backup of

the tbl_name.MYD file as tbl_name-datetime.BAK.
FORCE Run recovery even if we would lose more than one row from the .MYD

file.
QUICK = Don't check the rows in the table if there aren't any delete blocks.
DEFAULT = Recovery w/out backup, forcing, quick checking.
Before the server automatically repairs a table, it writes a note about the repair

to the error log. If you want to be able to recover from most problems
without user intervention, you should use the options BACKUP,FORCE.
This forces a repair of a table even if some rows would be deleted, but it
keeps the old data file as a backup so that you can later examine what
happened.

multi-threaded repair by sorting is beta-quality

67

MyISAM Index Sorting

! Done with REPAIR TABLE, ALTER TABLE,
LOAD DATA INFILE, CREATE INDEX

! myisam_sort_buffer_size

! myisam_max_sort_file_size

myisam_sort_buffer_size = buffer size for sorting indexes during REPAIR
TABLE or adding a new index to an existing table w/data. max is 4Gb
before 5.1.23, 16,384 petabytes 5.1.23 and later, assuming 64-bit. 64-bit
windows limit is 4Gb no matter what version, larger values are truncated.

myisam_max_sort_file_size = max temp file when re-
creating a MyISAM index during repair, ALTER
TABLE or LOAD DATA INFILE. If bigger than this,
index is created using key_cache instead, which
takes longer.

68

Aborted connects/clients

! Aborted_clients

! Aborted_connects
! max_connect_errors
! connect_timeout)

Aborted_clients = client left w/out properly closing.
Usually due to not closing a db handler (in code, or
by someone stopping code before the close
occurred).

Aborted_connects = client could not connect – wrong
username/password, wrong permissions,
connect_timeout reached (can indicate DNS
problems), or wrong info in connection packet.

69

Profiling

! have_community_features

! profiling
! per-session

! profiling_history_size

have_community_features – profiling was a community
contributed feature...

profiling = Whether or not query profiling is turned on.
Per-session only. See
http://dev.mysql.com/doc/refman/5.1/en/show-
profiles.html

profiling_history_size = How many queries to keep
profiling information for. Rotated on a FIFO basis.

70

SQL Behavior
! sql_auto_is_null

! sql_mode

! sql_quote_show_create

sql_auto_is_null= if on, SELECT * FROM tbl WHERE
autoincrement_col IS NULL will return the last
inserted row (similar to SELECT LAST_INSERT_ID)

sql_mode- very long to explain, my book has 6 pages
on it!

sql_quote_show_create = SHOW CREATE TABLE
statements are quoted so identifiers are escaped

71

SQL Behavior
! sql_safe_updates

! also called i-am-a-dummy

! updatable_views_with_limit

! new

! old

sql_safe_updates = updates or deletes with no limit xor
no where clause using an index are not allowed if
this is set to ON.

updatable_views_with_limit = YES by default, meaning
that an update is allowed if it has a LIMIT to an
updatable view that does not contain a unique key in
its definition. If set to NO, updates with LIMIT are not
allowed on these types of views.

new = used in 4.0 to turn on 4.1 behaviors
old = changes default scope of index hints. In general

we don't recommend index hints, so this shouldn't be
a problem. (index hints with no FOR clause apply
only to how indexes are used for row retrieval and
not to resolution of ORDER BY or GROUP BY
clauses). Added in 5.1.17 as old_mode, changed to
old in 5.1.18, this is how index hints are used before
5.1.17.

72

Variables That Are Not Useful

! big_tables
! sql_big_tables

! old_alter_table

! pseudo_thread_id

big_tables (OFF) was a session-only variable, and
saved all intermediate sets to files. Prevents most
“table is full” errors for intermediate tables. This
functionality is automatic in MySQL 3.23.2 and up,
using memory for temp tables and switching to disk
tables when the intermediate set is large enough.

old_alter_table – see
http://www.pythian.com/news/2963
It’s used to disable the optimizations that were added

in 5.1 for “Faster Alter Table”

pseudo_thread_id
“ This variable is for internal server use. “

73

Not used/Not useful

! table_lock_wait_timeout

! rpl_recovery_rank

! Rpl_status

table_lock_wait_timeout and rpl_recovery_rank – not
used

Rpl_status
“ The status of fail-safe replication (not yet

implemented). “

74

These variables are not used
! time_format (%H:%i:%s)

! date_format (%Y-%m-%d)

! datetime_format (%Y-%m-%d %H:%i:%s)

! innodb_file_io_threads
! used on Windows only

75

Mostly Unused Variables
! log_tc_size

! not shown in SHOW GLOBAL VARIABLES

! Tc_log_max_pages_used

! Tc_log_page_size

! Tc_log_page_waits

log-tc-size – size of the memory-mapped
implementation of the log that is used by mysqld
when it acts as the transaction coordinator for
recovery of internal XA transactions.

Tc_log_max_pages_used = high water mark for #
pages used in the log.

If the product of Tc_log_max_pages_used and
Tc_log_page_size is always significantly less than
the log size, log-tc-size can be reduced. Currently,
this variable is unused: It is unneeded for binary log-
based recovery, and the memory-mapped recovery
log method is not used unless the number of storage
engines capable of two-phase commit is greater than
one. (InnoDB is the only applicable engine.)

Tc_log_page_size x 0
Tc_log_page_waits x 5 – not sure why there

are waits when this is theoretically unused?

76

Percona Server (5.1)
! XtraDB instead of InnoDB

! Somewhat transparent

! Patched MySQL

! http://www.percona.com/docs/wiki/percona-
server:features:indexes:variable_reference

Lots of features
I will only go over the performance ones, though, and

not touch on things that are off by default.

Will also only go over 5.1 Percona features, not 5.5,
otherwise it's just too much.

Like:
- information_schema tables that show things like

response time for queries, more stats in general, like
indexes used.

- make InnoDB more reliable after a crash
- ability to export/import physical backups of one table,

like myisam.

77

innodb_fast_recovery

No overhead to this change
This change is simple. If the new page's oldest_modification is,,,

[newer than any oldest_modification in flushlist]

add to first of the flush_list

[older than any oldest_modification in flushlist]

add to last of the flush_list

[else]

overwrite oldest_modification by the oldest oldest_modification in
flush_list

add to last of the flush_list

78

innodb_read_ahead

This variable controls the read-ahead algorithm of InnoDB. The
following values are available:

 'none': disables read-ahead
 'linear' (default): if enough pages within the same extent are

accessed sequentially, InnoDB will automatically fetch the
remaining pages

 'both': enable both 'random' and 'linear' algorithms.

You can also control the threshold from which InnoDB will perform a
read ahead request with the innodb_read_ahead_threshold
variable (a regular innodb variable)

_threshold: (InnoDB Plugin only) Controls the sensitivity of linear
read-ahead that InnoDB uses to prefetch pages into the buffer
cache. If InnoDB reads at least innodb_read_ahead_threshold
pages sequentially from an extent (64 pages), it initiates an
asynchronous read for the entire following extent. The permissible
range of values is 0 to 64. The default is 56: InnoDB must read at
least 56 pages sequentially from an extent to initiate an
asynchronous read for the following extent.

79

innodb_log_block_size

This variable changes the size of transaction log records. The default
size of 512 bytes is good in most situations. However, setting it to
4096 may be a good optimization with SSD cards. While settings
other than 512 and 4096 are possible, as a practical matter these
are really the only two that it makes sense to use.

Next slide also touches on some ssd stuff.

80

Checkpointing
! innodb_adaptive_checkpoint

! none
! reflex
! estimate
! keep_average

Default is none <=1.05, estimate >=1.06
InnoDB constantly flushes dirty blocks from the buffer pool. Normally, the checkpoint is done

passively at the current oldest page modification (this is called “fuzzy checkpointing”).
When the checkpoint age nears the maximum checkpoint age (determined by the total
length of all transaction log files), InnoDB tries to keep the checkpoint age away from the
maximum by flushing many dirty blocks. But, if there are many updates per second and
many blocks have almost the same modification age, the huge number of flushes can
cause stalls.

Adaptive checkpointing forces a constant flushing activity at a rate of approximately
[modified age / maximum checkpoint age]. This can avoid or soften the impact of stalls
casued by aggressive flushing.

*** 'reflex': This behavior is similar to innodb_max_dirty_pages_pct flushing. The
difference is that this method starts flushing blocks constantly and contiguously based on
the oldest modified age. If the age exceeds 1/2 of the maximum age capacity, InnoDB
starts weak contiguous flushing. If the age exceeds 3/4, InnoDB starts strong flushing.
The strength can be adjusted by the MySQL variable innodb_io_capacity. In other words,
we must tune innodb_io_capacity for the 'reflex' method to work the best.

*** 'estimate': If the oldest modified age exceeds 1/2 of the maximum age capacity,
InnoDB starts flushing blocks every second. The number of blocks flushed is determined
by [number of modified blocks], [LSN progress speed] and [average age of all modified
blocks]. So, this behavior is independent of the innodb_io_capacity variable.

*** 'keep_average': This method attempts to keep the I/O rate constant by using a much
shorter loop cycle (0.1 second) than that of the other methods (1.0 second). It is
designed for use with SSD cards.

:!: In some cases innodb_adaptive_checkpoint needs larger transaction log files
(innodb_adaptive_checkpoint makes the limit of modified age lower). So, doubling the
length of the transaction log files may be safe.

81

innodb_checkpoint_age_target

Adaptive checkpointing forces a constant flushing activity at a rate of approximately
[modified age / maximum checkpoint age]. This can avoid or soften the impact of stalls
casued by aggressive flushing.

This variable controls the maximum value of the checkpoint age if its value is different from
0. If the value is equal to 0, it has no effect.

It is not needed to shrink innodb_log_file_size to tune recovery time.

82

Flushing

83

Flushing
! innodb_adaptive_flushing

! innodb_flush_method

! innodb_flush_log_at_trx_commit_session

! innodb_flush_neighbor_pages

innodb_adaptive_flushing – default false for innodb, true for xtradb. This is an existing
InnoDB variable used to attempt flushing dirty pages in a way that avoids I/O bursts at
checkpoints. In XtraDB, the default value of the variable is changed from that in InnoDB.

innodb_flush_method – also in innodb,
innodb_flush_method - The following values are allowed:
 'fdatasync': use fsync() to flush both the data and log files.
 'O_SYNC': use O_SYNC to open and flush the log files; use fsync() to flush the data

files.
 'O_DIRECT': use O_DIRECT (or directio() on Solaris) to open the data files; use fsync()

to flush both the data and log files.
 'ALL_O_DIRECT': use O_DIRECT open and flush both the data and the log files. This

value was added in Percona Server release 5.1.54-12.5.

innodb_flush_log_at_trx_commit_session – like innodb_flush_log_at_trx_commit, but a
session variable. 0/1/2 are same as innodb_flush_log_at_trx_commit, so you can set it
to 1 globally and 2 for certain transactions. A value of 3 means “just use the global
value”.

innodb_flush_neighbor_pages – default 1
This variable specifies whether, when the dirty pages are flushed to the data file, the

neighbor pages in the data file are also flushed at the same time or not. The following
values are available:

 0: disables the feature
 1 (default): enables the feature
If you use a storage which has no “head seek delay” (e.g. SSD or enough memory for write

buffering), 0 may show better performance.

84

innodb_lazy_drop_table

Default value is off

When innodb_file_per_table is set to 1, doing a DROP TABLE can
take a long time on servers with a large buffer pool, even on an
empty InnoDB table. This is because InnoDB has to scan through
the buffer pool to purge pages that belong to the corresponding
tablespace. Furthermore, no other queries can start while that
scan is in progress.

When innodb_lazy_drop_table is ON, XtraDB optimizes that process
by only marking the pages corresponding to the tablespace being
deleted. It defers the actual work of evicting those pages until it
needs to find some free pages in the buffer pool.

When innodb_lazy_drop_table is OFF, the usual behavior for
dropping tables is in effect.

85

innodb_use_purge_thread

Default =0, >0 is number of purge threads. >1 is experimental, so if you need it, set it to 1.

Purge of the undo space is periodically done by the InnoDB main thread
 In most cases for an OLTP application, the transactions are small and short-running so the

undo space can fit in memory in the buffer pool. The purge is then quick and efficient.

But there are several reasons that can make the undo space grow very large and go to disk:
 long-running transactions
 transactions with lots of changes
 too many updates for the purge process to keep up

In all cases performance will drop dramatically. In standard InnoDB it is difficult to find an
efficient solution for this problem.

You can now have one or several threads dedicated to the purge. This feature provides
several benefits:

 more control over the purge process
 more stable performance (no more performance drops)
 the InnoDB main thread does not need to take care of the purge anymore

But be aware that this feature comes at a cost: it reduces the overall performance because
purging adds a non-negligible overhead. However we think it is better to have slightly
worse but stable performance over time than to have better peak performance but
unpredictable sharp drops.

86

innodb_dict_size_limit

! http://www.percona.com/docs/wiki/percona-
server:features:innodb_dict_size_limit

If your data dictionary is taking up more than a gigabyte or so of
memory, you may benefit from this feature. A data dictionary of this
size normally occurs when you have many tens of thousands of
tables. For servers on which tables are accessed little by little over
a significant portion of time, memory usage will grow steadily over
time, as if there is a memory leak. For servers that access every
table fairly soon after being started, memory usage will increase
quickly and then stabilize.

On standard InnoDB, the size of the data dictionary depends on the
number and size of tables opened in the server. Once a table is
opened, it is never removed from the data dictionary unless you
drop the table or you restart the server. In some cases, the data
dictionary grows extremely large. If this consumes enough
memory, the server will begin to use virtual memory. Use of virtual
memory can cause swapping, and swapping can cause severe
performance degradation. By providing a way to set an upper limit
to the amount of memory the data dictionary can occupy, this
feature provides users a way to create a more predictable and
controllable situation.

Link at bottom is how to figure out if you need this, and how to size

87

InnoDB Insert Buffer

! innodb_ibuf_accel_rate

! innodb_ibuf_active_contract

! innodb_ibuf_max_size

Increasing the value of innodb_ibuf_accel_rate increases insert buffer activity.
Default Value 100 Range 100 - 999999999
Each time the background insert buffer thread is called, its activity is altered by

the value of both innodb_io_capacity and innodb_ibuf_accel_rate this way :

[real activity] = [default activity] * (innodb_io_capacity/100) *
(innodb_ibuf_accel_rate/100)

active_contract: This variable specifies whether the insert buffer can be
processed before it reaches its maximum size. The following values are
allowed:

 0: the insert buffer is not processed until it is full. This is the standard
InnoDB behavior.

 1: the insert buffer can be processed even it is not full. (1 by default)

ibuf_max_size - maximum size of the insert buffer. By default the insert buffer
is half the size of the buffer pool so if you have a very large buffer pool, the
insert buffer will be very large too and you may want to restrict its size with
this variable.

Setting this variable to 0 is equivalent to disabling the insert buffer. But then all
changes to secondary indexes will be performed synchronously =
performance degradation. Likewise a too small value can hurt performance.

If you have very fast storage (ie storage with RAM-level speed, not just a RAID
with fast disks), a value of a few MB may be the best choice for maximum
performance.

88

Buffer Pool

Buffer pool is data and indexes in memory. When you stop MySQL, buffer pool is lost.

There are 2 ways to keep the buffer pool information across a restart: doing an
export/import of the buffer pool or the more fiddly storing the buffer pool in shared
memory.

89

Buffer Pool Export/Import
! innodb_auto_lru_dump

Before shutdown:
mysql> select * from information_schema.XTRADB_ADMIN_COMMAND /*!
XTRA_LRU_DUMP*/;
+------------------------------+
| result_message |
+------------------------------+
| XTRA_LRU_DUMP was succeeded. |
+------------------------------+
1 row in set (0.02 sec)

After startup:
mysql> select * from information_schema.XTRADB_ADMIN_COMMAND /*!
XTRA_LRU_RESTORE*/;
+---------------------------------+
| result_message |
+---------------------------------+
| XTRA_LRU_RESTORE was succeeded. |
+---------------------------------+
1 row in set (0.62 sec)

Buffer pool uses least recently used algorithm , hence “LRU”
export/import can still be done manually even if innodb_auto_lru_dump is off (off by default)
Manual:
Before shutdown:
mysql> select * from information_schema.XTRADB_ADMIN_COMMAND /*!

XTRA_LRU_DUMP*/;
| XTRA_LRU_DUMP was succeeded. |

After startup:
mysql> select * from information_schema.XTRADB_ADMIN_COMMAND /*!

XTRA_LRU_RESTORE*/;
| XTRA_LRU_RESTORE was succeeded. |

This special feature of Percona Server enables the buffer pool to be restored to its pre-
shutdown state in a matter of minutes.

The feature works as follows. The buffer pool is a list of pages, usually 16kb in size, which
are identified by an 8-byte number kept in LRU. The mechanism is to save the list of 8-
byte page numbers just before shutdown, and after restart, to read the pages from disk
and insert them back into the LRU at the correct position. The pages are sorted by ID to
avoid random I/O, which is slower than sequential I/O on most disks. The LRU list is
saved to the file ib_lru_dump in the directory specified by the datadir configuration
setting, so you can back it up and restore it with the rest of your data easily.

Note that this feature does not store the contents of the buffer pool (i.e. it does not write
1GB of data to disk if you have a 1GB buffer pool). It stores only the identifiers of the
pages in the buffer pool, which is a very small amount of data even for large buffer pools.

This feature can be used both manually and automatically. It is safe to enable automatically,
and we have not found any performance regressions in it.

90

Shared Memory Buffer Pool

This is a way to save the buffer pool in shared memory so that when MySQL starts up again
it can use it.

In order to reuse the buffer pool stored in shared memory, InnoDB must shut down cleanly
before the server is restarted, otherwise the shared memory segment should be
removed.

Restrictions required in order to use the buffer pool in shared memory are as follows:
 The InnoDB executable cannot be changed between restarts.
 The value of innodb_page_size can't be changed between restarts.
 The value of innodb_buffer_pool_size can't be changed between restarts. If it is

changed, an error will be reported, e.g.:
InnoDB: Error: srv_buf_pool_size is different (shm=85899345920 current=75161927680).
For most errors resulting from the use of the feature, the solution is to manually

remove/reinitialize the shared memory segment. There is also no provision for removing
the shared memory segment automatically when it is no longer needed to store the
buffer pool. This must also be done by manually removing the shared memory segment,
using ipcs to find the memory segment and ipcrm to delete it.

Segment Size Too Large
One InnoDB message you may see is:
Warning: Failed to allocate 88165400576 bytes. (new) errno 22
This may be because the size of the segment you are trying to allocate is exceeding

SHMAX. You can see the current value of SHMAX by doing:
cat /proc/sys/kernel/shmmax
If that is the problem, increase the value of SHMAX so that is large enough, e.g., by doing:
echo 137438953472 > /proc/sys/kernel/shmmax

91

Shared Memory Buffer Pool
! innodb_buffer_pool_shm_key

! innodb_buffer_pool_shm_checksum

If innodb_buffer_pool_shm_key is non-zero when InnoDB restarts, InnoDB
tries to reconnect and reuse the existing buffer pool in shared memory.
InnoDB will not start with an error. If an error occurs on startup, the shared
memory segment will also need to be removed.

Zero by default. If the value is non-zero, it specifies the key of the shared
memory segment in which to store the buffer pool.

The range of innodb_buffer_pool_shm_key is system dependent, from zero to
usually the maximum value of an UNSIGNED INTEGER. It is an input
parameter to the shmget system function. For details, see your system IPC
manual.

Checksum validation of the shared memory buffer pool is performed at startup
and shutdown when innodb_buffer_pool_shm_checksum is enabled. It is
enabled by default. Startup and shutdown are slower when checksum
validation is enabled, but enabling it adds additional protection against the
shared memory region becoming corrupted.

92

Very Fine Tuning

93

Write-heavy workloads

94

Reduce Statistics Overhead
! innodb_stats_auto_update

! innodb_stats_update_need_lock

! innodb_use_sys_stats_table

innodb_stats_auto_update

(default 1) - InnoDB updates the each index statistics automatically (many
updates were done, some information_schema is accessed, table monitor,
etc…). Setting this option 0 can stop these automatic recalculation of the
statistics except for “first open” and “ANALYZE TABLE command”.

innodb_stats_update_need_lock

(default 1) - If you meet contention of &dict_operation_lock, setting 0 reduces
the contention. But 0 disables to update “Data_free:” of “show table status”.

innodb_use_sys_stats_table

(default OFF) - If this option is enabled, XtraDB uses the SYS_STATS system
table to store statistics of table indexes. Also, when InnoDB opens a table
for the first time, it loads the statistics from SYS_STATS instead of sampling
index pages. If you use a high stats_sample_pages value, the first open of a
table is expensive. In such a case, this option will help. Note: This option
may cause less frequent updating of statistics. So, you should intentionally
use the ANALYZE TABLE command more often.

(This variable was introduced in release 5.1.50-11.4.)

95

innodb_extra_rsegments

Some write-intensive workloads on boxes with many CPUs have
scalability problems. The contention is caused by the rollback
segment, which is single: all transactions are serialized when
needing to access the segment. With this feature you can now
create and use multiple segments (up to 256).

NOTE: This feature is incompatible with InnoDB. As long as a single
rollback segment is used, there is no problem; the database can
still be used by both XtraDB and InnoDB. However, creating
multiple rollback segments will cause an internal format change to
the system tablespace. Once multiple segments have been
created, the database will no longer be compatible with InnoDB.

When you modify this variable, you must restart the MySQL server
for the change to take effect. Please note that you must perform a
slow shutdown (ie with innodb_fast_shutdown = 0). If you just
perform a fast shutdown, the MySQL server will then restart
without error but the additional segments will not be created.

Can check the INNODB_RSEG table if this is enabled.

96

innodb_fast_checksum

Write-heavy workloads
Off by default
InnoDB writes a checksum at the end of each data page in

order to detect data files corruption. However computing
this checksum requires CPU cycles and in some
circumstances this extra overhead can become significant.

XtraDB can use a more CPU-efficient algorithm, based on 4-
byte words, which can be beneficial for some workloads
(for instance write-heavy workloads on servers that can
perform lots of IO).

The original algorithm is checked after the new one, so you
can have data pages with old checksums and data pages
with new checksums. However in this case, you may
experience slow reads from pages having old checksums.
If you want to have the entire benefit of this change, you
will to recreate all your InnoDB tables, for instance by
dumping and reloading all InnoDB tables.

97

innodb_doublewrite_file

You can set a dedicated doublewrite file, but this is very advanced.
Usually this is in the centralized ibdata1 file.

In usual workloads the performance impact is 5% or so. As a
consequence, you should always enable the doublewrite buffer
because the strong guarantee against data corruption is worth the
small performance drop.

But if you experience a heavy workload, especially if your data does
not fit in the buffer pool, the writes in the doublewrite buffer will
compete against the random reads to access the disk. In this
case, you can see a sharp performance drop compared to the
same workload without the doublewrite buffer-a 30% performance
degradation is not uncommon.

Another case when you can see a big performance impact is when
the doublewrite buffer is full. Then new writes must wait until
entries in the doublewrite buffer are freed.

98

That's it!

Questions? Comments? Feedback?

@sheeri
sheeri@palominodb.com

MySQL Administrator's Bible
OurSQL Podcast (www.oursqlcast.com)

http://planet.mysql.com

