Agile Environments and DBAS

Laine Campbell, PalominoDB
Sheeri Cabral, The Pythian Group

o Es JpyTHIAN

Definition of Agile

From m-w.com:

Main Entry: ag-ile

Pronunciation: \'a-jal, -,ji(-3)I\

Function: adjective Etymology:Middle French, from Latin
aqgilis, from agere to drive, act — more at agent Date:1581

1 : marked by ready ability to move with quick
easy grace <an agile dancer>

2 : having a quick resourceful and adaptable
character <an agile mind>

Definition of Agile

From Wikipedia:

Agile methodologies generally promote a project
management process that encourages frequent
iInspection and adaptation,

Definition of Agile
From Wikipedia:

Agile methodologies generally promote a project
management process that encourages frequent
inspection and adaptation, a leadership
philosophy that encourages teamwork, self-
organization and accountability,

Definition of Agile
From Wikipedia:

Agile methodologies generally promote a project
management process that encourages frequent
inspection and adaptation, a leadership
philosophy that encourages teamwork, self-
organization and accountability, a set of
engineering best practices that allow for rapid
delivery of high-quality software,

Definition of Agile
From Wikipedia:

Agile methodologies generally promote a project
management process that encourages frequent
inspection and adaptation, a leadership
philosophy that encourages teamwork, self-
organization and accountability, a set of
engineering best practices that allow for rapid
delivery of high-quality software, and a business
approach that aligns development with customer
needs and company goals.

Agile Environments

Rapid Delivery
Time-driven: Release what's done
High number of changes and frequent QA

Functionality from the beginning

Prepare not Predict

What a DBA does, part 1

Defines architecture
Schema design and implementation

Database Configuration

What a DBA does, part 2

Database Security

Backup and Recovery

Data integrity

What a DBA does, part 3

Developer support
Tuning and query optimization

May have QA duties

An Agile Database System
Frequent change, little downtime
Rolling implementations, fallbacks
Requirements change often, unpredictably

Well documented, has change management

Supporting Rapid Change

Adaptive vs. Predictive
Containment

Contingencies

Online Operations In MySQL

Adding/dropping tables
Adding/dropping databases

Dynamic global variables

Online Operations in 5.1

Adding values at end of ENUM/SET
Column rename
Column default value change

Starting and stopping logging

Frequent Production Changes

What is the impact?
Can the code handle 1t?

New fields, tables, views
naming conventions, plans

Frequent Production Changes

Cache changes / invalidations
Data amount changes optimization

Catch changes done "out of process"

Frequent Production Changes

Easily create new instances

How do you rollback?

What is your DR plan?

Master/Slave Replication

Promotion procedures
Rolling implementations
Slave cold cache

Does not scale writes

Master/Master Replication

Does not scale writes

App needs to handle live traffic switches
Insert Buffer Merges

sgl_log_bin=0

Changing server-ids

Data Synchronization

Non deterministic changes
Statement based vs. Row based
Keep an eye on drift

mk-table-checksum

Splitting Data

1D Last First State Color
1 Cabral Sheer MA Blue
2 Campbell Laine CA Red
3 Cosloy Barry CT B rown
4 Wasserman Maya MJ Purple

Vertically Splitting Data

1D Last First State Color
1 Cabral Sheeri A Blue
2 Camphbell Laine CA Red
3 Cosloy Barry CT B rown
4 Wasserman Maya M Purple

Vertically Splitting Data

1D Last First
1 Cabral Sheeri
2 Camphbell Laine
3 Cosloy Barry
4 Wasserman Maya

1D Last First

1 Cabral Sheer

2 Campbell Laine

3 Cosloy Barry

4 Wasserman Maya

State Color

MA Elue

CA Red

" Erown

M Purple
1D State Color
1 MA Elue
2 CA Red
3 CT Erown
4 M Purple

Horizontally Splitting Data

1D Last First State Color
1 Cabral Sheern MA Blue
2 Camphbell Laine CA Red
3 Cosloy Barry CT B rown
4 Wasserman Maya M. FPurple

Horizontally Splitting Data

1D Last First State Color
1 Cabral Sheer A Blue
2 Camphbell Laine CA Red
3 Cosloy Barry CT B rown
4 Wasserman Maya M. FPurple
1D Last First State Color
1 Cabral Sheeri A Blue
2 Campbell Laine CA Red
3 Cosloy Barry CT Brown
1D Last First State Color
4 Wasserman Maya M FPurple

Splitting Data

Data design
Code design

Upgrade by sections

Prepare, Not Predict

Avoid generic fields

Flexible datatypes/sizing

Revisit schema, query plans and indexing

Prepare, Not Predict

Defragment!!!

Avoid/revisit index hints and other hacks

Know what queries you are running (mk-query-digest)

Plan for data management

Finding Problems

Query/database errors

Proactively monitor queries with mk-query-digest

Slow query log aggregation/review

Finding Problems

Application debug mode

Constant feedback to development

Monitor for unplanned schema changes

Testing/QA

Do not have the same problem twice
Performance Testing
Schema diff/storage/reversion

Release notes

People Skills

Be a part of the full lifecycle:
design
develop
test
implement

Set and meet expectations

encourage discipline

People Skills

Encourage communication and trust
Make others want to come to you for review/questions

Be efficient

Maatkit Query Digest Output (1)

main:4218 28360 Getting a dbh from processlist for --processlist
230ms user time, 20ms system time, 14.94M rss, 132.49M vsz
Overall: 95 total, 34 unique, 8.64 QPS, 2.08x concurrency

total min max avg 95% stddev median
Exec time 23s 102ms 4s 241ms 640ms 67ms 105ms
Lock time 0 0 0 0 0 0 0

Time range 1239991238 to 1239991249

Query 1: 0 QPS, 0x concurrency, ID 0x11B5A1D8DF88E882 at byte 0
pct total min max avg 95% stddev median

Count 2 2

Exectime 25 6s 2s 4s 3s 4s 2S 3s

Lock time 0 0 0 0 0 0 0 0

Users XXXXXX

Databases T XXXXXXXXX

Time range 1239991244 to 1239991244

Query_time distribution

10ms

100ms

s #HHHEHHHTH A AR T
10s+

Maatkit Query Digest Output (2)

Tables
SHOW TABLE STATUS FROM "break production’ LIKE 'videos'\G
SHOW CREATE TABLE "break_production’. videos \G
SHOW TABLE STATUS FROM "break_production’ LIKE "approvals\G
SHOW CREATE TABLE "break production’. approvals’\G
SHOW TABLE STATUS FROM "break production” LIKE 'feedings'\G
SHOW CREATE TABLE "break_production’. feedings \G
SHOW TABLE STATUS FROM "break production’ LIKE 'feeds'\G
SHOW CREATE TABLE "break_production’. feeds \G
SHOW TABLE STATUS FROM "break_production’ LIKE 'customer_content_providers'\G
SHOW CREATE TABLE "break production’."customer_content_providers’\G
EXPLAIN
SELECT videos.* FROM ‘videos™ INNER JOIN approvals ON videos.id=approvals.video_id INNER JOIN
feedings on videos.id=feedings.video_id INNER JOIN feeds on feeds.id=feedings.feed_id INNER JOIN
customer_content_providers ON
feeds.content_provider_id=customer_content_providers.content_provider_id WHERE
(feeds.code="all_videos'
AND approvals.status = 1
AND videos.transcoding_status = 1
AND customer_content_providers.customer_id=31
AND videos.publicated_at < '2009-04-17 11:00:42
AND (videos.expiration_date is null or videos.expiration_date > '2009-04-17 11:00:42"))
ORDER BY publicated_at desc LIMIT 10, 5\G

FH o R HHHEHHH KR

Maatkit Query Digest Output (3)

(taken from maatkit online docs)
Review information
comments: really bad IN() subquery, fix soon!
first_seen: 2008-12-01 11:48:57
jira_ticket: 1933
last_seen: 2008-12-18 11:49:07
priority: high
reviewed_by: xaprb
reviewed _on: 2008-12-18 15:03:11

Thank you!

Questions
Comments

Feedback

Laine - laine@palominodb.com

Sheeri - cabral@pythian.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

