

Innodb status variables

The Pythian Group
www.pythian.com

Overview

● SHOW ENGINE INNODB STATUS
● Internal Innodb status variables
● Need to know how InnoDB works

Header
mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
090904 9:36:09 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 12 seconds

Semaphores
From wikipedia: “a semaphore is a protected variable or abstract data type

which constitutes the classic method for restricting access to shared
resources such as shared memory in a parallel programming environment.

http://en.wikipedia.org/wiki/Semaphore_(programming)

Basically: locking.

Semaphores

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 32171153, signal count 31011552
Mutex spin waits 0, rounds 20027565614, OS waits 21875962
RW-shared spins 15207459, OS waits 1053752; RW-excl spins 95741267, OS

waits 2485654

● innodb_sync_spin_loops
● innodb_thread_concurrency

Semaphore Examples
--Thread 1157658944 has waited at btr/btr0cur.c line 384 for 242.00 seconds the semaphore:
S-lock on RW-latch at 0x2aaab11afd38 created in file dict/dict0dict.c line 1356
a writer (thread id 1105209664) has reserved it in mode exclusive
number of readers 0, waiters flag 1

--Thread 8113 has waited at ibuf0ibuf.c line 366 for 1.00 seconds the semaphore:
S-lock on RW-latch at 67e58d0 created in file dict0dict.c line 3706
number of readers 0, waiters flag 0
Last time read locked in file ibuf0ibuf.c line 366
Last time write locked in file ibuf0ibuf.c line 359

--Thread 8128 has waited at srv0srv.c line 1491 for 0.00 seconds the semaphore:
Mutex at 50cba68 created file srv0srv.c line 872, lock var 1

 btr0pcur.c B-tree / persistent cursor 16,720 index tree persistent cursor
ibuf0ibuf.c Insert Buffer / 91,397 Insert buffer

 srv0srv.c Server / Server 75,633 Server main program

http://forge.mysql.com/wiki/MySQL_Internals_Files_In_InnoDB_Sources

lock0lock.c trx0trx.c row0vers.c

LATEST FOREIGN KEY ERROR

LATEST FOREIGN KEY ERROR

090818 10:07:52 Transaction:
TRANSACTION 800FC62A, ACTIVE 0 sec, process no 26213, OS thread id

1077606720 updating or deleting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1216, 2 row lock(s), undo log entries 1
MySQL thread id 1032146, query id 334809087 web02 localhost test updating
DELETE FROM `db`.`table1` WHERE `id` = "124083"
Foreign key constraint fails for table `db`.`table1`:
CONSTRAINT `ibfk_1` FOREIGN KEY (`id`) REFERENCES `table2` (`t2_id`)
Trying to delete or update in parent table, in index `PRIMARY` tuple:
DATA TUPLE: 12 fields;
 But in child table `db`.`table2` in index `t2_id`, there is a record:
PHYSICAL RECORD: n_fields 4; compact format; info bits 0

LATEST DETECTED DEADLOCK
*** (1) TRANSACTION:
TRANSACTION 0 2133803100, ACTIVE 0 sec, process no 2246, OS thread id

46921598638416 starting index read
mysql tables in use 1, locked 1 LOCK WAIT 4 lock struct(s), heap size

1216, 2 row lock(s)
MySQL thread id 3581917, query id 3269458032 localhost test statistics
SELECT * FROM `tbl1` WHERE (`tbl1`.`id` = 432323) FOR UPDATE
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 2123005 n bits 240 index `PRIMARY` of

table `test`.`tbl1` trx id 0 2133803100 lock_mode X locks rec but not
gap waiting

*** (2) TRANSACTION:
TRANSACTION 0 2133803101, ACTIVE 0 sec, process no 2246, OS thread id

46921794419024 starting index read, thread declared inside InnoDB 500
UPDATE `tbl2` SET `foo` = 'bar', WHERE `id` = 2891733
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 2123005 n bits 240 index `PRIMARY` of

table `test`.`tbl1` trx id 0 2133803101 lock_mode X locks rec but not
gap

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 1073304 n bits 152 index `PRIMARY` of

table `test`.`tbl2` trx id 0 2133803101 lock_mode X locks rec but not
gap waiting

*** WE ROLL BACK TRANSACTION (2)

TRANSACTIONS

TRANSACTIONS

Trx id counter 0 243137723
Purge done for trx's n:o < 0 243137700 undo n:o < 0 0
History list length 25
Total number of lock structs in row lock hash table 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 243137707, not started, process no 359, OS thread id
47049732798800
MySQL thread id 31020, query id 27084360 localhost dev_user
SHOW ENGINE INNODB STATUS
---TRANSACTION 0 243085791, not started, process no 359, OS thread id
47049451391312
MySQL thread id 29646, query id 26084726 localhost 127.0.0.1 root
---TRANSACTION 0 243137721, not started, process no 359, OS thread id
47049446906192
MySQL thread id 1962, query id 27084359 Has read all relay log; waiting
for the slave I/O thread to update it

TRANSACTIONS
---TRANSACTION 1 9440456, ACTIVE 292 sec, process no 19041, OS thread id
1160870208 starting index read, thread declared inside InnoDB 15
mysql tables in use 2, locked 0
, holds adaptive hash latch
MySQL thread id 745660, query id 1616649038 db01.company.com 192.168.1.10
dev_user Copying to tmp table
SELECT tbl1.id FROM tbl1 left join tbl2 on tbl2.id = tbl1.join_fk order by tbl2.field2 DESC,
tbl1.field3 DESC
Trx read view will not see trx with id >= 1 9440457, sees < 1 9437436

● innodb_thread_concurrency
● innodb_thread_sleep_delay
● innodb_commit_concurrency
● innodb_concurrency_tickets

FILE I/O

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer

thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
163285 OS file reads, 1701867 OS file writes, 834324 OS fsyncs
0.37 reads/s, 16384 avg bytes/read, 10.84 writes/s, 2.28 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 5, seg size 7,
36923 inserts, 36924 merged recs, 27673 merges
Hash table size 3187567, node heap has 3949 buffer(s)
2.00 hash searches/s, 17.08 non-hash searches/s

An extreme example

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 4073, seg size 4075,
102097 inserts, 102097 merged recs, 72909 merges
Hash table size 25499819, used cells 22802357, node heap has 84495 buffer(s)
8457.31 hash searches/s, 1731.17 non-hash searches/s

Innodb_buffer_pool_pages_misc was 11% of the InnoDB buffer pool, which was 12
Gb – meaning there were over 1 Gb of space for the misc pages!

innodb_adaptive_hash_index status variable turns the adaptive hash index off.

LOG

LOG

Log sequence number 334 1812523962
Log flushed up to 334 1812523129
Last checkpoint at 334 1812506173
1 pending log writes, 0 pending chkp writes
742679 log i/o's done, 1.50 log i/o's/second

LOG

LOG

Log sequence number 120 4209985949
Log flushed up to 120 4209985949
Last checkpoint at 120 4191865426
0 pending log writes, 0 pending chkp writes
325299 log i/o's done, 1.30 log i/o's/second

BUFFER POOL AND MEMORY

BUFFER POOL AND MEMORY

Total memory allocated 1808574926; in additional pool allocated 2096896
Dictionary memory allocated 1991080
Buffer pool size 98304
Free buffers 0
Database pages 94074
Modified db pages 565
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 1063693, created 336507, written 2087885
1.00 reads/s, 0.67 creates/s, 0.00 writes/s
Buffer pool hit rate 962 / 1000

ROW OPERATIONS

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
1 read views open inside InnoDB
Main thread process no. 359, id 47049446496592, state: flushing log
Number of rows inserted 31473405, updated 36004623, deleted 116956,

read 455968337
0.33 inserts/s, 0.00 updates/s, 0.33 deletes/s, 0.33 reads/s

Feedback
Questions?

Comments?

Suggestions?

Covered the information from SHOW ENGINE INNODB STATUS, and how to tune:
● innodb_thread_concurrency
● innodb_adaptive_hash_index
● innodb_sync_spin_loops
● innodb_thread_sleep_delay
● innodb_commit_concurrency
● innodb_concurrency_tickets

 1

Innodb status variables

The Pythian Group
www.pythian.com

This presentation should be focused on how to prepare
application and database server for production and
avoid performance issues.

 2

Overview

● SHOW ENGINE INNODB STATUS
● Internal Innodb status variables
● Need to know how InnoDB works

SHOW INNODB STATUS syntax will be deprecated in
5.2

This is for the official release, there's other information in
the Percona release – more than 4 writers & readers in
File I/O.

 3

Header
mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
090904 9:36:09 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 12 seconds

Header is simple and provides current date and time.
Also it shows the period during which averages were
calculated. User can't control it and usually it is not
longer than 1 minute

 4

Semaphores
From wikipedia: “a semaphore is a protected variable or abstract data type

which constitutes the classic method for restricting access to shared
resources such as shared memory in a parallel programming environment.

http://en.wikipedia.org/wiki/Semaphore_(programming)

Basically: locking.

 5

Semaphores

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 32171153, signal count 31011552
Mutex spin waits 0, rounds 20027565614, OS waits 21875962
RW-shared spins 15207459, OS waits 1053752; RW-excl spins 95741267, OS

waits 2485654

● innodb_sync_spin_loops
● innodb_thread_concurrency

A large number of threads waiting for semaphores may
be lots of disk I/O, or contention problems in InnoDB.
Contention can be due to heavy query parallelism or
problems in OS thread scheduling. If lots of
contention, reduce innodb_thread_concurrency
(global, dynamic, 8 by default, 0-1,000). 0=unlimited

(think of a buffet line, if everyone goes at once it will
take a long time).

Innodb has multiphase wait policy. First it tries to use a
spin wait – just burns CPU cycles by checking if
threads can proceed. Escalates to OS wait, which
performs a context switch to let another thread run.

spin waits = more cpu, no context switch vs. OS waits.
innodb_sync_spin_loops “The number of times a

thread waits for an InnoDB mutex to be freed before
the thread is suspended. The default value is 20.”
Global, dynamic, range is 0-4,294,967,295.

OS WAITS ARRAY shows reservations for OS waits
vs. how many signals were actually sent to threads.

 6

Semaphore Examples
--Thread 1157658944 has waited at btr/btr0cur.c line 384 for 242.00 seconds the semaphore:
S-lock on RW-latch at 0x2aaab11afd38 created in file dict/dict0dict.c line 1356
a writer (thread id 1105209664) has reserved it in mode exclusive
number of readers 0, waiters flag 1

--Thread 8113 has waited at ibuf0ibuf.c line 366 for 1.00 seconds the semaphore:
S-lock on RW-latch at 67e58d0 created in file dict0dict.c line 3706
number of readers 0, waiters flag 0
Last time read locked in file ibuf0ibuf.c line 366
Last time write locked in file ibuf0ibuf.c line 359

--Thread 8128 has waited at srv0srv.c line 1491 for 0.00 seconds the semaphore:
Mutex at 50cba68 created file srv0srv.c line 872, lock var 1

 btr0pcur.c B-tree / persistent cursor 16,720 index tree persistent cursor
ibuf0ibuf.c Insert Buffer / 91,397 Insert buffer

 srv0srv.c Server / Server 75,633 Server main program

http://forge.mysql.com/wiki/MySQL_Internals_Files_In_InnoDB_Sources

lock0lock.c trx0trx.c row0vers.c

You can figure out what the thread was waiting for
based on where the locking is. Go to the source
code if you have to, although getting a general idea
is usually enough – is it due to waiting for a buffer?
waiting for an index write? etc.

In this example, the srv0srv.c was caused by waits
seen during long SELECT FOR UPDATE query

 7

LATEST FOREIGN KEY ERROR

LATEST FOREIGN KEY ERROR

090818 10:07:52 Transaction:
TRANSACTION 800FC62A, ACTIVE 0 sec, process no 26213, OS thread id

1077606720 updating or deleting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1216, 2 row lock(s), undo log entries 1
MySQL thread id 1032146, query id 334809087 web02 localhost test updating
DELETE FROM `db`.`table1` WHERE `id` = "124083"
Foreign key constraint fails for table `db`.`table1`:
CONSTRAINT `ibfk_1` FOREIGN KEY (`id`) REFERENCES `table2` (`t2_id`)
Trying to delete or update in parent table, in index `PRIMARY` tuple:
DATA TUPLE: 12 fields;
 But in child table `db`.`table2` in index `t2_id`, there is a record:
PHYSICAL RECORD: n_fields 4; compact format; info bits 0

This section appears only if there were recent foreign
key errors. The output is a bit simplified here and
doesn't show actual index data to make it shorter.

There are two cases when foreign key error can
happen.

1. When inserting, deleting, updating rows having
dependencies in other tables

2. When adding/deleting/changing columns that refer
to other tables

Check this section when:
error 150 – foreign key constraint failed
or something like error 1025 – error on rename table

 8

LATEST DETECTED DEADLOCK
*** (1) TRANSACTION:
TRANSACTION 0 2133803100, ACTIVE 0 sec, process no 2246, OS thread id

46921598638416 starting index read
mysql tables in use 1, locked 1 LOCK WAIT 4 lock struct(s), heap size

1216, 2 row lock(s)
MySQL thread id 3581917, query id 3269458032 localhost test statistics
SELECT * FROM `tbl1` WHERE (`tbl1`.`id` = 432323) FOR UPDATE
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 2123005 n bits 240 index `PRIMARY` of

table `test`.`tbl1` trx id 0 2133803100 lock_mode X locks rec but not
gap waiting

*** (2) TRANSACTION:
TRANSACTION 0 2133803101, ACTIVE 0 sec, process no 2246, OS thread id

46921794419024 starting index read, thread declared inside InnoDB 500
UPDATE `tbl2` SET `foo` = 'bar', WHERE `id` = 2891733
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 2123005 n bits 240 index `PRIMARY` of

table `test`.`tbl1` trx id 0 2133803101 lock_mode X locks rec but not
gap

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 1073304 n bits 152 index `PRIMARY` of

table `test`.`tbl2` trx id 0 2133803101 lock_mode X locks rec but not
gap waiting

*** WE ROLL BACK TRANSACTION (2)

Shows only two last transactions involved and last two
statements in each transaction

Output may be too large to display, because it shows
row data as well.

Heap size is amount of memory used to hold row locks

InnoDB rolled back the transaction which had done
fewest updates.

 9

TRANSACTIONS

TRANSACTIONS

Trx id counter 0 243137723
Purge done for trx's n:o < 0 243137700 undo n:o < 0 0
History list length 25
Total number of lock structs in row lock hash table 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 243137707, not started, process no 359, OS thread id
47049732798800
MySQL thread id 31020, query id 27084360 localhost dev_user
SHOW ENGINE INNODB STATUS
---TRANSACTION 0 243085791, not started, process no 359, OS thread id
47049451391312
MySQL thread id 29646, query id 26084726 localhost 127.0.0.1 root
---TRANSACTION 0 243137721, not started, process no 359, OS thread id
47049446906192
MySQL thread id 1962, query id 27084359 Has read all relay log; waiting
for the slave I/O thread to update it

MVCC in play with purging – purging of versions from
undo area happens when no current transaction is
using that version (because if they are, they might
need the info inside it). Make sure to commit once
you're done, otherwise you are needlessly allowing
the data to remain, and purge does not happen.
Subtract current txn # and last purged txn # to get
difference.

innodb_max_purge_lag – default is 0, no delay.
Increase to put some lag in DML statements, so
purge has time to run.

"undo” shows the transaction whose latest version is
being purged, or 0 if there is no active purge.

- History = the # of unpurged transactions in undo area
- OS thread id can be used when debugging with gdb

or lsof or other tools.
- lock struct = possibly many rows per lock struct.

 10

TRANSACTIONS
---TRANSACTION 1 9440456, ACTIVE 292 sec, process no 19041, OS thread id
1160870208 starting index read, thread declared inside InnoDB 15
mysql tables in use 2, locked 0
, holds adaptive hash latch
MySQL thread id 745660, query id 1616649038 db01.company.com 192.168.1.10
dev_user Copying to tmp table
SELECT tbl1.id FROM tbl1 left join tbl2 on tbl2.id = tbl1.join_fk order by tbl2.field2 DESC,
tbl1.field3 DESC
Trx read view will not see trx with id >= 1 9440457, sees < 1 9437436

● innodb_thread_concurrency
● innodb_thread_sleep_delay
● innodb_commit_concurrency
● innodb_concurrency_tickets

The thread is in the InnoDB kernel and has 15 tickets left to use.
innodb_concurrency_tickets – # times a thread can enter InnoDB

without having to be queued if the threads exceed the value of
innodb_thread_concurrency, default 500

MVCC – Repeatable read!
States for transactions: not started, fetching rows, updating, etc.
active (even if thread is sleeping, b/c it could be part of a multi-query

transaction).

innodb_thread_concurrency limits how many threads in Innodb
kernel, statuses for threads not in kernel:

waiting in InnoDB queue. sleeping before joining InnoDB queue

If no free slot for a new thread, InnoDB makes a thread sleep for a
small amount of time before entering the kernel. This is the status
variable innodb_thread_sleep_delay (value is in microsends,
10,000 by default, or 0.1 seconds).

tables locked = table level locking, usually 0

innodb_commit_concurrency – 0 is for “unlimited”, which is also the
default. basically how many simultaneous commits. dynamic,
global, but can't change from 0 to nonzero and vice versa at
runtime, 5.1.36 and later.

 11

FILE I/O

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer

thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
163285 OS file reads, 1701867 OS file writes, 834324 OS fsyncs
0.37 reads/s, 16384 avg bytes/read, 10.84 writes/s, 2.28 fsyncs/s

If any of these aren't waiting for an I/O request, it
means they is contention for some resource –
usually it is I/O. (or if there are things pending)

Insert buffer thread – does insert buffer merges
(records being merged from buffer into the
tablespace)

Log thread – does asynchronous log flushes

Read thread – does read-ahead to prefetch data
InnoDB thinks it will need soon

Write thread – flushes dirty buffers

“On Unix, the number of threads is always 4. On
Windows, the number depends on the setting of the
innodb_file_io_threads system variable.”

 12

INSERT BUFFER AND ADAPTIVE HASH INDEX

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 5, seg size 7,
36923 inserts, 36924 merged recs, 27673 merges
Hash table size 3187567, node heap has 3949 buffer(s)
2.00 hash searches/s, 17.08 non-hash searches/s

When inserting into non-unique secondary indexes InnoDB may put
records into insert buffer and flush them to disk after transaction
commits

If a table fits almost entirely in main memory, the fastest way to
perform queries on it is to use hash indexes. InnoDB has a
mechanism that monitors index searches made to the indexes
defined for a table. If InnoDB notices that queries could benefit
from building a hash index, it does so automatically.

InnoDB builds hash indexes on demand for those pages of the index
that are often accessed.

The ration of merges to inserts indicates how efficient insert buffer is.

The ratio of hash lookups to non-hash looks shows how efficient
adaptive hash index is

 13

An extreme example

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 4073, seg size 4075,
102097 inserts, 102097 merged recs, 72909 merges
Hash table size 25499819, used cells 22802357, node heap has 84495 buffer(s)
8457.31 hash searches/s, 1731.17 non-hash searches/s

Innodb_buffer_pool_pages_misc was 11% of the InnoDB buffer pool, which was 12
Gb – meaning there were over 1 Gb of space for the misc pages!

innodb_adaptive_hash_index status variable turns the adaptive hash index off.

innodb_adaptive_hash_index is global, static (not
dynamic). Bug before 5.0.52, can turn it off as of
5.0.52, bug fixed in 5.0.54.

careful if you're running 5.0.45!

 14

LOG

LOG

Log sequence number 334 1812523962
Log flushed up to 334 1812523129
Last checkpoint at 334 1812506173
1 pending log writes, 0 pending chkp writes
742679 log i/o's done, 1.50 log i/o's/second

The values are numbers in bytes, representing the log
sequence number. You can see how much
unflushed data there is and how much data there is
since the last checkpoint.

Checkpoint -- marks a state when data and log file
were in known state and can be used for recovery

unflushed data = (1812523962-1812523129)/1024 =
0.8135 Kb
last checkpoint was (1812506173-1812523129)/1024

16.5586 Kb ago.

If a significant amount, like 30%, of
innodb_log_buffer_size is unflushed, you may want
to increase the amount of innodb_log_buffer_size.

 15

LOG

LOG

Log sequence number 120 4209985949
Log flushed up to 120 4209985949
Last checkpoint at 120 4191865426
0 pending log writes, 0 pending chkp writes
325299 log i/o's done, 1.30 log i/o's/second

Here, the data is flushed, last checkpoint is over 17 Mb
ago. This is on a server with
innodb_flush_logs_at_trx_commit=0, so I always
expect the logs to be flushed!

 16

BUFFER POOL AND MEMORY

BUFFER POOL AND MEMORY

Total memory allocated 1808574926; in additional pool allocated 2096896
Dictionary memory allocated 1991080
Buffer pool size 98304
Free buffers 0
Database pages 94074
Modified db pages 565
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 1063693, created 336507, written 2087885
1.00 reads/s, 0.67 creates/s, 0.00 writes/s
Buffer pool hit rate 962 / 1000

Total memory allocated and in additional pool are in
bytes

dictionary memory was added in 5.1

buffer pool size is in pages

modified db pages are pages not flushed to disk yet
(>0 even when flush_logs_at_trx_commit=0).

Pages read 1063693, created 336507, written
2087885 (pages that were read/written to disk)

LRU – least recently used

flush list hold the pages that have to be flushed by
checkpoint process

single page writes – writes that will not be batched with
other writes when written to disk

 17

ROW OPERATIONS

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
1 read views open inside InnoDB
Main thread process no. 359, id 47049446496592, state: flushing log
Number of rows inserted 31473405, updated 36004623, deleted 116956,

read 455968337
0.33 inserts/s, 0.00 updates/s, 0.33 deletes/s, 0.33 reads/s

Read view is a consistent MVCC snapshot of the db as
of point transaction started

 18

Feedback
Questions?

Comments?

Suggestions?

Covered the information from SHOW ENGINE INNODB STATUS, and how to tune:
● innodb_thread_concurrency
● innodb_adaptive_hash_index
● innodb_sync_spin_loops
● innodb_thread_sleep_delay
● innodb_commit_concurrency
● innodb_concurrency_tickets

