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Safe Harbor Statement
This presentation contains “forward-looking statements” within the meaning of Section 27A of the 
Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as 
amended. Such forward-looking statements are subject to a number of risks, uncertainties, assumptions 
and other factors that could cause actual results and the timing of certain events to differ materially from 
future results expressed or implied by the forward-looking statements.  Factors that could cause or 
contribute to such differences include, but are not limited to, those identified our filings with the Securities 
and Exchange Commission. You should not rely upon forward-looking statements as predictions of future 
events. Furthermore, such forward-looking statements speak only as of the date of this presentation.

In particular, the development, release, and timing of any features or functionality described for MongoDB 
products remains at MongoDB’s sole discretion. This information is merely intended to outline our general 
product direction and it should not be relied on in making a purchasing decision nor is this a commitment, 
promise or legal obligation to deliver any material, code, or functionality. Except as required by law, we 
undertake no obligation to update any forward-looking statements to reflect events or circumstances after 
the date of such statements.



Agenda Normalization and MongoDB

Schema Design and Performance

Seamless no-downtime Migration

Q&A

60 minutes
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Sysadmin for 4 years

MySQL DBA for 14 years

Master’s in Computer Science



RDBMS = 
Relational Database 
Management System



Relation = Table





row ~ document



table ~ collection
row ~ document
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data integrity 
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Hard to update a 
multi-value data cell

Duplicate data       

wastes resources
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What problems
does normalization cause?

Joins are expensive

Transactions 

(ACID compliance) more difficult

Migrations are not convenient
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Model the objects that your

application uses
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Relational MongoDB



Data that is accessed together
should be stored together 
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Relational MongoDB

Thinking in Documents
https://www.mongodb.com/blog/post/thinking-documents-part-1 

 

6 Rules of Thumb for MongoDB Schema Design
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-

schema-design-part-1
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multi-key = index for arrays
and nested arrays

simple = single field

Unique or non-unique

What about indexes?

compound = multiple fields
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What about structure?

schema validation

require fields

specify data types
including enumerated lists
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What about foreign keys?
Do you really need them?

App validates from db lookups

Why validate again?

How does your app handle failures?
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schema validation and 

enum for specific 
values

reference
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What about transactions?

Atomicity
succeeds or fails completely

Consistency
db from one valid state to another

Isolation
how/when changes are seen by ops

Durability
completion is forever



What about transactions?

MongoDB has transactions
across documents, collections, shards, etc.



Relational MongoDB

What about transactions?



Lots of transactions?

 Rethink your schema



articles
articles



articles
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should be stored together 



Data that is accessed together
should be stored together 

No downtime
seamless migrations
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Code application to handle 

strings and dates

update documents 

one at a time

Change strings to dates

New data stored as dates
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16Mb document size limit

Hot documents
Activity hot spots

Embed = fast access
Large docs use

 more memory



articles



articles



articles

comments



articles



articles



articles

comments



subset

comments

articles



articles



articles

overflow_comments



articles

overflow_comments

outlier
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Building a MongoDB 

schema 

Array of references 
for separate data

1:many

Embed if you can

1:few

Reference for unbounded arrays

1:zillion
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Schema Patterns
Polymorphic 

flexible schema

subset
part of data is duplicated by embedding

outlier 
a few documents will overflow

Building with Patterns blog series:
https://www.mongodb.com/blog/post/building-with-patterns-a-summary

extended 
reference

not just _id
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From RDBMS to MongoDB
Documents do not need to have 

identical fields
Data that is accessed together

should be stored together 

Rethink if you have lots of  
references or transactions



Credit, Thanks and Links
Asya Kamsky
Evin Roesle
Nick Larew
Aly Cabral
Wikipedia

Thinking in Documents
https://www.mongodb.com/blog/post/thinking-documents-part-1 

 

6 Rules of Thumb for MongoDB Schema Design
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-

schema-design-part-1 

Building with Patterns blog series:
https://www.mongodb.com/blog/post/building-with-patterns-a-summary



Q&A
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