
Best Practices for Migrating
From RDBMS to MongoDB
Sheeri Cabral, Product Manager, Distributed Systems

Safe Harbor Statement
This presentation contains “forward-looking statements” within the meaning of Section 27A of the
Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as
amended. Such forward-looking statements are subject to a number of risks, uncertainties, assumptions
and other factors that could cause actual results and the timing of certain events to differ materially from
future results expressed or implied by the forward-looking statements. Factors that could cause or
contribute to such differences include, but are not limited to, those identified our filings with the Securities
and Exchange Commission. You should not rely upon forward-looking statements as predictions of future
events. Furthermore, such forward-looking statements speak only as of the date of this presentation.

In particular, the development, release, and timing of any features or functionality described for MongoDB
products remains at MongoDB’s sole discretion. This information is merely intended to outline our general
product direction and it should not be relied on in making a purchasing decision nor is this a commitment,
promise or legal obligation to deliver any material, code, or functionality. Except as required by law, we
undertake no obligation to update any forward-looking statements to reflect events or circumstances after
the date of such statements.

Agenda Normalization and MongoDB

Schema Design and Performance

Seamless no-downtime Migration

Q&A

60 minutes

Who am I?

Who am I?

Master’s in Computer Science

Who am I?

Sysadmin for 4 years

Master’s in Computer Science

Who am I?

Sysadmin for 4 years

MySQL DBA for 14 years

Master’s in Computer Science

RDBMS =
Relational Database
Management System

Relation = Table

row ~ document

table ~ collection
row ~ document

What problems
does normalization solve?

What problems
does normalization solve?

Hard to update a
multi-value data cell

What problems
does normalization solve?

Duplicate data leads to

data integrity
problems when doing updates

Hard to update a
multi-value data cell

What problems
does normalization solve?

Duplicate data leads to

data integrity
problems when doing updates

Hard to update a
multi-value data cell

Duplicate data

wastes resources

What problems
does normalization cause?

What problems
does normalization cause?

Transactions

(ACID compliance) more difficult

What problems
does normalization cause?

Joins are expensive

Transactions

(ACID compliance) more difficult

What problems
does normalization cause?

Joins are expensive

Transactions

(ACID compliance) more difficult

Migrations are not convenient

Data that is accessed together
should be stored together

users

articles

articles

users

users

articles

 // Get the user object
> user = db.user.findOne({username: “sheeri”});

articles

users

 // Get the user object
> user = db.user.findOne({username: “sheeri”});
 // Get all the articles linked to the person
> myArticles = db.articles.find({_id: {
 $in : people.articles.map(authorId => user._id) } })

articles

users

 // Get the user object
> user = db.user.findOne({username: “sheeri”});

articles

users

 // Get the user object
> user = db.user.findOne({username: “sheeri”});
 // Get all the articles linked to the person
> myArticles = db.articles.find({_id: {
 $in : people.articles.map(authorId => user._id) } })

articles

users

Model the objects that your

application uses

users

articles

articles

users

articles

Extended reference

users

articles

users

articles
users

MongoDB

Relational MongoDB

Data that is accessed together
should be stored together

Relational MongoDB

Relational MongoDB

Thinking in Documents
https://www.mongodb.com/blog/post/thinking-documents-part-1

6 Rules of Thumb for MongoDB Schema Design
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-

schema-design-part-1

Relational MongoDB

What about indexes?

Relational MongoDB

What about indexes?

index index

index

index
index

Relational MongoDB

What about indexes?

What about indexes?

simple = single field

What about indexes?

simple = single field

What about indexes?

compound = multiple fields

multi-key = index for arrays
and nested arrays

simple = single field

What about indexes?

compound = multiple fields

multi-key = index for arrays
and nested arrays

simple = single field

Unique or non-unique

What about indexes?

compound = multiple fields

What about structure?

What about structure?

schema validation

What about structure?

schema validation

require fields

What about structure?

schema validation

require fields

specify data types
including enumerated lists

What about foreign keys?

What about foreign keys?
Do you really need them?

What about foreign keys?
Do you really need them?

App validates from db lookups

What about foreign keys?
Do you really need them?

App validates from db lookups

Why validate again?

What about foreign keys?
Do you really need them?

App validates from db lookups

Why validate again?

How does your app handle failures?

What about foreign keys?

What about foreign keys?

embed for parent/child

What about foreign keys?

embed for parent/child

schema validation and

enum for specific
values

What about foreign keys?

embed for parent/child

schema validation and

enum for specific
values

reference

What about transactions?

What about transactions?

Atomicity
succeeds or fails completely

What about transactions?

Atomicity
succeeds or fails completely

Consistency
db from one valid state to another

What about transactions?

Atomicity
succeeds or fails completely

Consistency
db from one valid state to another

Isolation
how/when changes are seen by ops

What about transactions?

Atomicity
succeeds or fails completely

Consistency
db from one valid state to another

Isolation
how/when changes are seen by ops

Durability
completion is forever

What about transactions?

MongoDB has transactions
across documents, collections, shards, etc.

Relational MongoDB

What about transactions?

Lots of transactions?

 Rethink your schema

articles
articles

articles

Data that is accessed together
should be stored together

Data that is accessed together
should be stored together

No downtime
seamless migrations

Change strings to dates

Code application to handle

strings and dates

Change strings to dates

Code application to handle

strings and dates

Change strings to dates

New data stored as dates

Code application to handle

strings and dates

update documents

one at a time

Change strings to dates

New data stored as dates

articles

16Mb document size limit

16Mb document size limit

Hot documents
Activity hot spots

16Mb document size limit

Hot documents
Activity hot spots

Embed = fast access

16Mb document size limit

Hot documents
Activity hot spots

Embed = fast access
Large docs use

 more memory

articles

articles

articles

comments

articles

articles

articles

comments

subset

comments

articles

articles

articles

overflow_comments

articles

overflow_comments

outlier

Building a MongoDB

schema

Building a MongoDB

schema

Embed if you can

1:few

Building a MongoDB

schema

Array of references
for separate data

1:many

Embed if you can

1:few

Building a MongoDB

schema

Array of references
for separate data

1:many

Embed if you can

1:few

Reference for unbounded arrays

1:zillion

Schema Patterns
Polymorphic

flexible schema

Schema Patterns
Polymorphic

flexible schema extended
reference

not just _id

Schema Patterns
Polymorphic

flexible schema

subset
part of data is duplicated by embedding

extended
reference

not just _id

Schema Patterns
Polymorphic

flexible schema

subset
part of data is duplicated by embedding

outlier
a few documents will overflow

extended
reference

not just _id

Schema Patterns
Polymorphic

flexible schema

subset
part of data is duplicated by embedding

outlier
a few documents will overflow

Building with Patterns blog series:
https://www.mongodb.com/blog/post/building-with-patterns-a-summary

extended
reference

not just _id

From RDBMS to MongoDB
Documents do not need to have

identical fields

From RDBMS to MongoDB
Documents do not need to have

identical fields

Data that is accessed together
should be stored together

From RDBMS to MongoDB
Documents do not need to have

identical fields
Data that is accessed together

should be stored together

Rethink if you have lots of
references or transactions

Credit, Thanks and Links
Asya Kamsky
Evin Roesle
Nick Larew
Aly Cabral
Wikipedia

Thinking in Documents
https://www.mongodb.com/blog/post/thinking-documents-part-1

6 Rules of Thumb for MongoDB Schema Design
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-

schema-design-part-1

Building with Patterns blog series:
https://www.mongodb.com/blog/post/building-with-patterns-a-summary

Q&A

	Slide 1
	Safe Harbor Statement
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	The reason?
	Slide 15
	Slide 16
	Slide 17
	Every company is becoming a data & software company
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

