Optimizing MySQL Joins and Subqueries

http://bit.ly/2012optmysql Sheeri Cabral

Senior DB Admin/Architect, Mozilla @sheeri www.sheeri.com

Northeast PHP 2012

EXPLAIN

SQL extension

SELECT only

Can modify other statements: UPDATE tbl SET fld1="foo" WHERE fld2="bar";

can be changed to:

EXPLAIN SELECT fld1 FROM tbl WHERE fld2="bar";

What EXPLAIN Shows

How many tables

- How tables are joined
- How data is looked up
- If there are subqueries, unions, sorts

What EXPLAIN Shows

If WHERE, DISTINCT are used

Possible and actual indexes used

Length of index used

Approx # of records examined

Metadata

Optimizer uses metadata: cardinality, # rows, etc.

- InnoDB approx stats
- InnoDB one method of doing dives into the data
- MyISAM has better/more accurate metadata

EXPLAIN Output

EXPLAIN returns 10 fields:

- select_type: SIMPLE
 - table: rental
 - type: const
- possible keys: PRIMARY
 - key: PRIMARY
 - key_len: 4
 - ref: const
 - rows: 1
 - Extra:
- 1 row in set (0.00 sec)

ld

mysql> EXPLAIN SELECT return_date

Id = sequential identifier

One per table, subquery, derived table

No row returned for a view

– Because it is virtual

- Underlying tables are represented

select_type

mysql> EXPLAIN SELECT return date

select_type: SIMPLE

SIMPLE – one table, or JOINs PRIMARY

First SELECT in a UNION

Outer query of a subquery

UNION, UNION RESULT

Other select_type output

Used in subqueries

– More on subqueries later

DEPENDENT UNION

DEPENDENT SUBQUERY

DERIVED

UNCACHEABLE SUBQUERY

table

One per table/alias NULL

NULL table

EXPLAIN SELECT $1+2 \setminus G$

EXPLAIN SELECT return_date FROM rental WHERE rental_id=0\G

"Data access method"

Get this as good as possible

type

ALL = full table scan

- Everything else uses an index

index = full index scan

- Scanning the entire data set?
- full index scan > full table scan (covering index)

range = partial index scan

_ <, <=, >, >=

- IS NULL, BETWEEN, IN

index_subquery

-using a non-unique index of one table

unique subquery

- using a PRIMARY/UNIQUE KEY of one table

More about subqueries later

index_merge

- Use more than one index
- Extra field shows more information
 - sort_union, intersection, union

ref_or_null

Joining/looking up non-unique index values JOIN uses a non-unique index or key prefix Indexed fields compared with = != <=> Extra pass for possible NULL values

Joining/looking up non-unique index values JOIN uses a non-unique index or key prefix Indexed fields compared with = != <=> No NULL value possibilities Best data access strategy for non-unique values

eq_ref

Joining/looking up unique index values

JOIN uses a unique index or key prefix

Indexed fields compared with =

Fastest Data Access

Joining/looking up unique index values

SELECT return_date FROM rental WHERE rental_id=13534;

System – system table, one value

EXPLAIN Plan indexes

possible_keys

key

key_len – longer keys = longer look up/ compare

ref – shows what is compared, field or "const"

Look closely if an index is not considered

Approx # rows examined

id: 1
select_type: SIMPLE
table: rental
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: const
rows: 1
Extra:
1 row in set (0.00 sec)

Approx # rows examined

mysql> EXPLAIN SELECT first_name,last_name FROM
customer LIMIT 10\G

id: 1 select type: SIMPLE table: customer type: ALL possible keys: NULL key: NULL key len: NULL ref: NULL rows: 541 Extra:

1 row in set (0.00 sec) LIMIT does not change rows, even though it affects # rows examined.

Can be good, bad, neutral

- Sometimes you cannot avoid the bad

Distinct – stops after first row match Full scan on NULL key – subquery, no index (bad) Impossible WHERE noticed after reading const tables

Not exists – stops after first row match for each row set from previous tables

Select tables optimized away – Aggregate functions resolved by index or metadata (good)

Range checked for each record (index map: N) – No good index; may be one after values from previous tables are known

Extra: Using (...)

Extra: Using filesort – does an extra pass to sort the data. – Worse than using an index for sort order.

Index – uses index only, no table read – Covering index

Index for group-by

- GROUP BY/DISTINCT resolved by index/metadata

Temporary

Intermediate temporary table used

More EXPLAIN Information

MySQL Manual

http://www.pythian.com/news/wp-content/uploads/explain-diagram.pdf

Pages 590 – 614 of the MySQL Administrator's Bible

Sakila sample database: http://dev.mysql.com/doc/index-other.html

Sample Subquery EXPLAIN

mysql> EXPLAIN SELECT first_name,last_name,email

- -> FROM customer AS customer outer
- -> WHERE customer outer.customer id

-> IN (SELECT customer_id FROM rental AS rental_subquery WHERE return_date IS NULL) \G

```
******* 2. row *******
******** 1. row *******
                                        id: 2
           id: 1
                               select type: DEPENDENT SUBQUERY
  select type: PRIMARY
                                     table: rental subquery
        table: customer outer
                                      type: index subquery
         type: ALL
                             possible keys: idx fk customer id
possible keys: NULL
                                       key: idx fk customer id
         key: NULL
                                   key len: 2
      key len: NULL
                                       ref: func
         ref: NULL
                                      rows: 13
         rows: 541
                                     Extra: Using where; Full
       Extra:
                             scan on NULL key
                             2 rows in set (0.00 sec)
```

MySQL and Subqueries

Avoid unoptimized subqueries

- Not all subqueries...any more
- Derived tables \rightarrow views or intermediate temp tbls
- Subqueries \rightarrow joins in some cases
- Getting better all the time
 - Optimized in MariaDB 5.3

MySQL Does Not Have

Materialized views

Materialized derived tables

Functional indexes (e.g. WHERE date(ts)=2012_05_30)

SELECT first_name,last_name,email

IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)

FROM customer AS customer outer\G

SELECT first_name,last_name,email

IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)

FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return date IS NULL

Note the ANSI-style JOIN clause

Explicit declaration of JOIN conditions

Do not use theta-style implicit JOIN conditions in WHERE

ANSI vs. Theta JOINs

SELECT first_name,last_name, email FROM rental INNER JOIN customer ON (customer.id=rental.customer_id) WHERE return date IS NULL

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
WHERE return_date IS NULL
AND customer.id=rental.customer_id

INNER JOIN, CROSS JOIN, JOIN are the same Don't use a comma join (FROM rental, customer)

A Correlated Subquery

Show the last payment info for each customer:

For each customer, find the max payment date, then get that info

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

EXPLAIN

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

id: 1 id: 2 select_type: DEPENDENT SUBQUERY select_type: PRIMARY table: pay_inner table: pay_outer type: ALL type: ref possible keys: NULL possible keys: idx fk customer id key: idx_fk_customer_id key: NULL key_len: 2 key len: NULL ref: NULL ref: sakila.pay_outer.customer_id rows: 14 rows: 16374 Extra: Extra: Using where 2 rows in set (0.00 sec)
Think in Terms of Sets

Show the last payment info for each customer:

Set of last payment dates, set of all payment info, join the sets

SELECT payment.* FROM (SELECT customer_id, MAX(payment_date) as last_order FROM payment GROUP BY customer_id) AS last_orders INNER JOIN payment ON payment.customer_id = last_orders.customer_id AND payment.payment_date = last_orders.last_order\G

EXPLAIN

EXPLAIN SELECT payment.* FROM (SELECT customer_id, MAX(payment_date) as last_order FROM payment GROUP BY customer_id) AS last_orders INNER JOIN payment

ON payment.customer_id = last_orders.customer_id
AND payment.payment_date = last_orders.last_order\G

id: 1 id: 1 id: 2 select type: PRIMARY select type: PRIMARY select_type: DERIVED table: <derived2> table: payment table: payment type: ref type: ALL type: range possible_keys: NULL possible_keys: possible keys: NULL key: NULL idx_fk_customer_id,customer_id_pay key: customer_id key len: NULL key: customer_id_pay key_len: 2 ref: NULL key len: 10 ref: NULL rows: 599 ref: last_orders.customer_id, rows: 1301 last_orders.last_order Extra: Extra: Using index for rows: 1 group-by 3 rows in set (0.01 sec) Extra:

id: 1 id: 2 select_type: DEPENDENT SUBQUERY select type: PRIMARY table: pay_inner table: pay_outer type: ALL type: ref possible keys: idx_fk_customer_id possible keys: NULL key: NULL key: idx fk customer id key len: NULL key_len: 2 ref: NULL ref: sakila.pay_outer.customer_id rows: 14 rows: 16374 Extra: Extra: Using where 2 rows in set (0.00 sec)id: 1 id: 1 select type: PRIMARY select_type: PRIMARY table: <derived2> table: payment type: ref type: ALL possible_keys: possible_keys: NULL key: NULL idx_fk_customer_id,customer_id_pay key len: NULL key: customer_id_pay ref: NULL key len: 10 rows: 599 ref: last_orders.customer_id, last_orders.last_order Extra: rows: 1 Extra:

Join-fu

- http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf
- p 22, mapping tables

http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf

- heirarchies/graphs/nested sets
- GIS calculations
- reporting/aggregates/ranks
- With thanks to Jay Pipes!

Questions? Comments? OurSQL Podcast www.oursgl.com

MySQL Administrator's Bible - tinyurl.com/mysqlbible

kimtag.com/mysql

planet.mysql.com

Optimizing MySQL Joins and Subqueries

What EXPLAIN Shows

How many tables How tables are joined How data is looked up If there are subqueries, unions, sorts

What EXPLAIN Shows

If WHERE, DISTINCT are used Possible and actual indexes used Length of index used Approx # of records examined

Metadata

Optimizer uses metadata: cardinality, # rows, etc.

InnoDB - approx stats

InnoDB - one method of doing dives into the data

MyISAM has better/more accurate metadata

EXPLAIN Output
EXPLAIN returns 10 fields:
<pre>mysql> EXPLAIN SELECT return_date -> FROM rental WHERE rental_id = 13534\G ************************************</pre>
1 row in set (0.00 sec)

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

One row per table.

Joining/looking up unique index values

SELECT return_date

FROM rental WHERE rental_id=13534;

System – system table, one value

One row per table.

EXPLAIN Plan indexespossible_keyskeykey_len - longer keys = longer look up/ compareref - shows what is compared, field or "const"Look closely if an index is not considered

One row per table.

Approx # rows examined
<pre>mysql> EXPLAIN SELECT return_date -> FROM rental WHERE rental_id = 13534\G ************************************</pre>

Approx # rows examined mysql> EXPLAIN SELECT first name, last name FROM customer LIMIT 10\G id: 1 select type: SIMPLE table: customer type: ALL possible_keys: NULL key: NULL key len: NULL ref: NULL rows: 541 Extra: 1 row in set (0.00 sec) LIMIT does not change rows, even though it affects # rows examined.

One row per table.

One row per table.

One row per table.

One row per table.

More EXPLAIN Information

MySQL Manual

http://www.pythian.com/news/wp-content/uploads/explain-diagram.pdf

Pages 590 – 614 of the MySQL Administrator's Bible

Sakila sample database: http://dev.mysql.com/doc/index-other.html

One row per table.

MySQL and SubqueriesAvoid unoptimized subqueries- Not all subqueries...any moreDerived tables → views or intermediate temp tblsSubqueries → joins in some casesGetting better all the time- Optimized in MariaDB 5.3

One row per table.

Materialized views

Materialized derived tables

Functional indexes (e.g. WHERE date(ts)=2012_05_30)

One row per table.

Convert a Subquery to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

Note the ANSI-style JOIN clause

Explicit declaration of JOIN conditions

Do not use theta-style implicit JOIN conditions in WHERE

One row per table.

ANSI vs. Theta JOINs

SELECT first_name, last_name, email FROM rental INNER JOIN customer ON (customer.id=rental.customer_id) WHERE return_date IS NULL

SELECT first_name,last_name, email FROM rental INNER JOIN customer WHERE return_date IS NULL AND customer.id=rental.customer_id

INNER JOIN, CROSS JOIN, JOIN are the same Don't use a comma join (FROM rental,customer)

One row per table.

A Correlated Subquery

Show the last payment info for each customer:

For each customer, find the max payment date, then get that info

SELECT pay_outer.* FROM payment pay_outer WHERE pay_outer.payment_date = (SELECT MAX(payment_date) FROM payment pay_inner WHERE pay_inner.customer_id=pay_outer.customer_id)

EXPLAIN

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

id: 1 select_type: PRIMARY table: pay_outer **type: ALL** possible_keys: NULL key: NULL key_len: NULL ref: NULL **rows: 16374** Extra: Using where id: 2 select_type: DEPENDENT SUBQUERY table: pay_inner type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.pay_outer.customer_id rows: 14 Extra: 2 rows in set (0.00 sec) Think in Terms of Sets

Show the last payment info for each customer:

Set of last payment dates, set of all payment info, join the sets

SELECT payment.* FROM (SELECT customer_id, MAX(payment_date) as last_order FROM payment GROUP BY customer_id) AS last_orders INNER JOIN payment ON payment.customer_id = last_orders.customer_id AND payment.payment_date = last_orders.last_order\G

EXPLAIN

EXPLAIN SELECT payment.* FROM (SELECT customer_id, MAX(payment_date) as last_order FROM payment GROUP BY customer_id) AS last_orders INNER JOIN payment ON payment.customer_id = last_orders.customer_id AND payment.payment_date = last_orders.last_order\G

*********** 1. row **********	**************************************	************** 3. row *************
id: 1	id: 1	id: 2
select_type: PRIMARY	select_type: PRIMARY	select_type: DERIVED
table: <derived2></derived2>	table: payment	table: payment
type: ALL	type: ref	type: range
possible_keys: NULL	possible_keys:	possible_keys: NULL
key: NULL	idx_fk_customer_id,customer_id_pay	key: customer_id
key_len: NULL	key: customer_id_pay	key_len: 2
ref: NULL	key_len: 10	ref: NULL
rows: 599	ref: last_orders.customer_id,	rows: 1301
Extra:	last_orders.last_order	Extra: Using index for
	rows: 1	group-by
	Extra:	3 rows in set (0.01 sec)

************ 1 row ******	******** *****************************		
id: 1	id 2		
select type: PRIMARY select type: DEPENDENT SUBQUERY			
table: pay outer table: pay inner			
type: ALL	type: ref		
possible_keys: NULL	s: NULL possible_keys: idx_fk_customer_id		
key: NULL	NULL key: idx_fk_customer_id		
key_len: NULL key_len: 2			
ref: NULL	_ ref: sakila.pay_outer.customer_id		
rows: 16374	/s: 16374 rows: 14		
Extra: Using wher	Extra: Using where Extra:		
	2 rows in set (0.00 sec)		
********** 1 row ******************************* 2 row ***********************************			
id: 1	id: 1	id: 2	
select type PRIMARY	select type PRIMARY	select type: DFRIVED	
table: <derived2></derived2>	table: payment	table: payment	
type: ALL	type: ref	type: range	
possible keys: NULL	possible keys:	possible keys: NULL	
key: NULL	idx fk customer id,customer id pay	key: customer id	
key_len: NULL	key: customer_id_pay	key_len: 2	
ref: NULL	key_len: 10	ref: NULL	
rows: 599	ref: last_orders.customer_id,	rows: 1301	
Extra:	last_orders.last_order	Extra: Using index for	
	rows: 1	group-by	
	Extra:	3 rows in set (0.01 sec)	

Join-fu

http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf

- p 22, mapping tables

http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf

- heirarchies/graphs/nested sets
- GIS calculations
- reporting/aggregates/ranks

With thanks to Jay Pipes!

