

Optimizing MySQL Joins and Subqueries

Sheeri Cabral
Senior DB Admin/Architect, Mozilla

@sheeri www.sheeri.com

Northeast PHP 2012

http://bit.ly/2012optmysql

http://www.sheeri.com/
http://www.sheeri.com/

EXPLAIN

SQL extension

SELECT only

Can modify other statements:

UPDATE tbl SET fld1=“foo” WHERE fld2=“bar”;

can be changed to:

EXPLAIN SELECT fld1 FROM tbl WHERE fld2=”bar”;

What EXPLAIN Shows

How many tables

How tables are joined

How data is looked up

If there are subqueries, unions, sorts

What EXPLAIN Shows

If WHERE, DISTINCT are used

Possible and actual indexes used

Length of index used

Approx # of records examined

Metadata

Optimizer uses metadata: cardinality, # rows, etc.

InnoDB - approx stats

InnoDB - one method of doing dives into the data

MyISAM has better/more accurate metadata

EXPLAIN Output

EXPLAIN returns 10 fields:

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
1 row in set (0.00 sec)

Id
mysql> EXPLAIN SELECT return_date

 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1

Id = sequential identifier

One per table, subquery, derived table

No row returned for a view

– Because it is virtual

– Underlying tables are represented

select_type
mysql> EXPLAIN SELECT return_date

 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE

SIMPLE – one table, or JOINs

PRIMARY

– First SELECT in a UNION

– Outer query of a subquery

UNION, UNION RESULT

Other select_type output

Used in subqueries

– More on subqueries later

DEPENDENT UNION

DEPENDENT SUBQUERY

DERIVED

UNCACHEABLE SUBQUERY

table

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental

- One per table/alias
- NULL

NULL table

EXPLAIN SELECT 1+2\G

EXPLAIN SELECT return_date FROM rental WHERE
rental_id=0\G

type

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const

“Data access method”

Get this as good as possible

type

ALL = full table scan

– Everything else uses an index

index = full index scan

– Scanning the entire data set?

– full index scan > full table scan (covering index)

range = partial index scan

– <, <=, >, >=

– IS NULL, BETWEEN, IN

type

index_subquery

– using a non-unique index of one table

unique subquery

– using a PRIMARY/UNIQUE KEY of one table

More about subqueries later

type

index_merge

– Use more than one index

– Extra field shows more information

• sort_union, intersection, union

ref_or_null

Joining/looking up non-unique index values

JOIN uses a non-unique index or key prefix

Indexed fields compared with = != <=>

Extra pass for possible NULL values

ref

Joining/looking up non-unique index values

JOIN uses a non-unique index or key prefix

Indexed fields compared with = != <=>

No NULL value possibilities

Best data access strategy for non-unique values

eq_ref

Joining/looking up unique index values

JOIN uses a unique index or key prefix

Indexed fields compared with =

Fastest Data Access

Joining/looking up unique index values

SELECT return_date

FROM rental WHERE rental_id=13534;

System – system table, one value

EXPLAIN Plan indexes

possible_keys

key

key_len – longer keys = longer look up/ compare

ref – shows what is compared, field or “const”

Look closely if an index is not considered

Approx # rows examined
mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
1 row in set (0.00 sec)

Approx # rows examined

mysql> EXPLAIN SELECT first_name,last_name FROM
customer LIMIT 10\G

*************** 1. row *****************
 id: 1
 select_type: SIMPLE
 table: customer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 541
 Extra:
1 row in set (0.00 sec)
LIMIT does not change rows, even though it affects # rows
examined.

Extra

Can be good, bad, neutral

– Sometimes you cannot avoid the bad

Distinct – stops after first row match

Full scan on NULL key – subquery, no index (bad)

Impossible WHERE noticed after reading const tables

Extra

Not exists – stops after first row match for each
row set from previous tables

Select tables optimized away – Aggregate
functions resolved by index or metadata (good)

Range checked for each record (index map: N)
– No good index; may be one after values from

previous tables are known

Extra: Using (...)

Extra: Using filesort – does an extra pass to sort the data.
– Worse than using an index for sort order.

Index – uses index only, no table read
– Covering index

Index for group-by
– GROUP BY/DISTINCT resolved by index/metadata

Temporary
– Intermediate temporary table used

More EXPLAIN
Information

MySQL Manual

http://www.pythian.com/news/wp-content/uploads/explain-diagram.pdf

Pages 590 – 614 of the MySQL Administrator's Bible

Sakila sample database: http://dev.mysql.com/doc/index-other.html

Sample Subquery
EXPLAIN

********* 1. row ********
 id: 1
 select_type: PRIMARY
 table: customer_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 541
 Extra:

mysql> EXPLAIN SELECT first_name,last_name,email
 -> FROM customer AS customer_outer
 -> WHERE customer_outer.customer_id
 -> IN (SELECT customer_id FROM rental AS rental_subquery
WHERE return_date IS NULL)\G

********** 2. row **********
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: rental_subquery
 type: index_subquery
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: func
 rows: 13
 Extra: Using where; Full
scan on NULL key
2 rows in set (0.00 sec)

MySQL and Subqueries
Avoid unoptimized subqueries

– Not all subqueries...any more

Derived tables → views or intermediate temp tbls

Subqueries → joins in some cases

Getting better all the time

– Optimized in MariaDB 5.3

MySQL Does Not Have

Materialized views

Materialized derived tables

Functional indexes (e.g. WHERE date(ts)=2012_05_30)

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

Note the ANSI-style JOIN clause

Explicit declaration of JOIN conditions

Do not use theta-style implicit JOIN conditions in WHERE

ANSI vs. Theta JOINs
SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
WHERE return_date IS NULL
AND customer.id=rental.customer_id

INNER JOIN, CROSS JOIN, JOIN are the same

Don't use a comma join (FROM rental,customer)

A Correlated Subquery

Show the last payment info for each customer:

For each customer, find the max payment date, then get that info

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

EXPLAIN

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

********************** 1. row **********************
 id: 1
 select_type: PRIMARY
 table: pay_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16374
 Extra: Using where

******************** 2. row ********************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: pay_inner
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.pay_outer.customer_id
 rows: 14
 Extra:
2 rows in set (0.00 sec)

Think in Terms of Sets

Show the last payment info for each customer:

Set of last payment dates, set of all payment info, join the sets

SELECT payment.* FROM
(SELECT customer_id, MAX(payment_date) as last_order
FROM payment
GROUP BY customer_id) AS last_orders
INNER JOIN payment
ON payment.customer_id = last_orders.customer_id
AND payment.payment_date = last_orders.last_order\G

EXPLAIN
EXPLAIN SELECT payment.* FROM
(SELECT customer_id, MAX(payment_date) as last_order
FROM payment GROUP BY customer_id) AS last_orders
INNER JOIN payment
ON payment.customer_id = last_orders.customer_id
AND payment.payment_date = last_orders.last_order\G

********** 1. row **********
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 599
 Extra:

************** 2. row **************
 id: 1
 select_type: PRIMARY
 table: payment
 type: ref
possible_keys:
idx_fk_customer_id,customer_id_pay
 key: customer_id_pay
 key_len: 10
 ref: last_orders.customer_id,
last_orders.last_order
 rows: 1
 Extra:

************ 3. row ************
 id: 2
 select_type: DERIVED
 table: payment
 type: range
possible_keys: NULL
 key: customer_id
 key_len: 2
 ref: NULL
 rows: 1301
 Extra: Using index for
group-by
3 rows in set (0.01 sec)

********** 1. row **********
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 599
 Extra:

************** 2. row **************
 id: 1
 select_type: PRIMARY
 table: payment
 type: ref
possible_keys:
idx_fk_customer_id,customer_id_pay
 key: customer_id_pay
 key_len: 10
 ref: last_orders.customer_id,
last_orders.last_order
 rows: 1
 Extra:

************ 3. row ************
 id: 2
 select_type: DERIVED
 table: payment
 type: range
possible_keys: NULL
 key: customer_id
 key_len: 2
 ref: NULL
 rows: 1301
 Extra: Using index for
group-by
3 rows in set (0.01 sec)

************ 1. row ************
 id: 1
 select_type: PRIMARY
 table: pay_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16374
 Extra: Using where

******************** 2. row ********************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: pay_inner
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.pay_outer.customer_id
 rows: 14
 Extra:
2 rows in set (0.00 sec)

Join-fu

http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf

- p 22, mapping tables

http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf

- heirarchies/graphs/nested sets

- GIS calculations

- reporting/aggregates/ranks

With thanks to Jay Pipes!

http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf
http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf
http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf
http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf

Questions? Comments?
OurSQL Podcast

www.oursql.com

MySQL Administrator's Bible

 - tinyurl.com/mysqlbible

kimtag.com/mysql

planet.mysql.com

Optimizing MySQL Joins and Subqueries

Sheeri Cabral
Senior DB Admin/Architect, Mozilla

@sheeri www.sheeri.com

Northeast PHP 2012

http://bit.ly/2012optmysql

EXPLAIN

SQL extension

SELECT only

Can modify other statements:

UPDATE tbl SET fld1=“foo” WHERE fld2=“bar”;

can be changed to:

EXPLAIN SELECT fld1 FROM tbl WHERE fld2=”bar”;

What EXPLAIN Shows

How many tables

How tables are joined

How data is looked up

If there are subqueries, unions, sorts

What EXPLAIN Shows

If WHERE, DISTINCT are used

Possible and actual indexes used

Length of index used

Approx # of records examined

Metadata

Optimizer uses metadata: cardinality, # rows, etc.

InnoDB - approx stats

InnoDB - one method of doing dives into the data

MyISAM has better/more accurate metadata

EXPLAIN Output

EXPLAIN returns 10 fields:

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
1 row in set (0.00 sec)

One row per table.

Id
mysql> EXPLAIN SELECT return_date

 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1

Id = sequential identifier

One per table, subquery, derived table

No row returned for a view

– Because it is virtual

– Underlying tables are represented

One row per table.

select_type
mysql> EXPLAIN SELECT return_date

 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE

SIMPLE – one table, or JOINs

PRIMARY

– First SELECT in a UNION

– Outer query of a subquery

UNION, UNION RESULT

One row per table.

Other select_type output

Used in subqueries

– More on subqueries later

DEPENDENT UNION

DEPENDENT SUBQUERY

DERIVED

UNCACHEABLE SUBQUERY

One row per table.

table

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental

- One per table/alias
- NULL

One row per table.

NULL table

EXPLAIN SELECT 1+2\G

EXPLAIN SELECT return_date FROM rental WHERE
rental_id=0\G

One row per table.

type

mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const

“Data access method”

Get this as good as possible

One row per table.

type

ALL = full table scan

– Everything else uses an index

index = full index scan

– Scanning the entire data set?

– full index scan > full table scan (covering index)

range = partial index scan

– <, <=, >, >=

– IS NULL, BETWEEN, IN

One row per table.

type

index_subquery

– using a non-unique index of one table

unique subquery

– using a PRIMARY/UNIQUE KEY of one table

More about subqueries later

One row per table.

type

index_merge

– Use more than one index

– Extra field shows more information

• sort_union, intersection, union

One row per table.

ref_or_null

Joining/looking up non-unique index values

JOIN uses a non-unique index or key prefix

Indexed fields compared with = != <=>

Extra pass for possible NULL values

One row per table.

ref

Joining/looking up non-unique index values

JOIN uses a non-unique index or key prefix

Indexed fields compared with = != <=>

No NULL value possibilities

Best data access strategy for non-unique values

One row per table.

eq_ref

Joining/looking up unique index values

JOIN uses a unique index or key prefix

Indexed fields compared with =

One row per table.

Fastest Data Access

Joining/looking up unique index values

SELECT return_date

FROM rental WHERE rental_id=13534;

System – system table, one value

One row per table.

EXPLAIN Plan indexes

possible_keys

key

key_len – longer keys = longer look up/ compare

ref – shows what is compared, field or “const”

Look closely if an index is not considered

One row per table.

Approx # rows examined
mysql> EXPLAIN SELECT return_date
 -> FROM rental WHERE rental_id = 13534\G
******************* 1. row *******************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
1 row in set (0.00 sec)

One row per table.

Approx # rows examined

mysql> EXPLAIN SELECT first_name,last_name FROM
customer LIMIT 10\G

*************** 1. row *****************
 id: 1
 select_type: SIMPLE
 table: customer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 541
 Extra:
1 row in set (0.00 sec)
LIMIT does not change rows, even though it affects # rows
examined.

One row per table.

Extra

Can be good, bad, neutral

– Sometimes you cannot avoid the bad

Distinct – stops after first row match

Full scan on NULL key – subquery, no index (bad)

Impossible WHERE noticed after reading const tables

One row per table.

Extra

Not exists – stops after first row match for each
row set from previous tables

Select tables optimized away – Aggregate
functions resolved by index or metadata (good)

Range checked for each record (index map: N)
– No good index; may be one after values from

previous tables are known

One row per table.

Extra: Using (...)

Extra: Using filesort – does an extra pass to sort the data.
– Worse than using an index for sort order.

Index – uses index only, no table read
– Covering index

Index for group-by
– GROUP BY/DISTINCT resolved by index/metadata

Temporary
– Intermediate temporary table used

One row per table.

More EXPLAIN
Information

MySQL Manual

http://www.pythian.com/news/wp-content/uploads/explain-diagram.pdf

Pages 590 – 614 of the MySQL Administrator's Bible

Sakila sample database: http://dev.mysql.com/doc/index-other.html

Sample Subquery
EXPLAIN

********* 1. row ********
 id: 1
 select_type: PRIMARY
 table: customer_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 541
 Extra:

mysql> EXPLAIN SELECT first_name,last_name,email
 -> FROM customer AS customer_outer
 -> WHERE customer_outer.customer_id
 -> IN (SELECT customer_id FROM rental AS rental_subquery
WHERE return_date IS NULL)\G

********** 2. row **********
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: rental_subquery
 type: index_subquery
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: func
 rows: 13
 Extra: Using where; Full
scan on NULL key
2 rows in set (0.00 sec)

One row per table.

MySQL and Subqueries
Avoid unoptimized subqueries

– Not all subqueries...any more

Derived tables → views or intermediate temp tbls

Subqueries → joins in some cases

Getting better all the time

– Optimized in MariaDB 5.3

One row per table.

MySQL Does Not Have

Materialized views

Materialized derived tables

Functional indexes (e.g. WHERE date(ts)=2012_05_30)

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

One row per table.

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

One row per table.

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

One row per table.

Convert a Subquery
to a JOIN

SELECT first_name,last_name,email
IN (SELECT customer_id FROM rental AS rental_subquery WHERE
return_date IS NULL)
FROM customer AS customer_outer\G

Think in data sets

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

Note the ANSI-style JOIN clause

Explicit declaration of JOIN conditions

Do not use theta-style implicit JOIN conditions in WHERE

One row per table.

ANSI vs. Theta JOINs
SELECT first_name,last_name, email
FROM rental INNER JOIN customer
ON (customer.id=rental.customer_id)
WHERE return_date IS NULL

SELECT first_name,last_name, email
FROM rental INNER JOIN customer
WHERE return_date IS NULL
AND customer.id=rental.customer_id

INNER JOIN, CROSS JOIN, JOIN are the same

Don't use a comma join (FROM rental,customer)

One row per table.

A Correlated Subquery

Show the last payment info for each customer:

For each customer, find the max payment date, then get that info

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

EXPLAIN

SELECT pay_outer.* FROM payment pay_outer
WHERE pay_outer.payment_date =
(SELECT MAX(payment_date)
FROM payment pay_inner
WHERE pay_inner.customer_id=pay_outer.customer_id)

********************** 1. row **********************
 id: 1
 select_type: PRIMARY
 table: pay_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16374
 Extra: Using where

******************** 2. row ********************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: pay_inner
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.pay_outer.customer_id
 rows: 14
 Extra:
2 rows in set (0.00 sec)

Think in Terms of Sets

Show the last payment info for each customer:

Set of last payment dates, set of all payment info, join the sets

SELECT payment.* FROM
(SELECT customer_id, MAX(payment_date) as last_order
FROM payment
GROUP BY customer_id) AS last_orders
INNER JOIN payment
ON payment.customer_id = last_orders.customer_id
AND payment.payment_date = last_orders.last_order\G

EXPLAIN
EXPLAIN SELECT payment.* FROM
(SELECT customer_id, MAX(payment_date) as last_order
FROM payment GROUP BY customer_id) AS last_orders
INNER JOIN payment
ON payment.customer_id = last_orders.customer_id
AND payment.payment_date = last_orders.last_order\G

********** 1. row **********
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 599
 Extra:

************** 2. row **************
 id: 1
 select_type: PRIMARY
 table: payment
 type: ref
possible_keys:
idx_fk_customer_id,customer_id_pay
 key: customer_id_pay
 key_len: 10
 ref: last_orders.customer_id,
last_orders.last_order
 rows: 1
 Extra:

************ 3. row ************
 id: 2
 select_type: DERIVED
 table: payment
 type: range
possible_keys: NULL
 key: customer_id
 key_len: 2
 ref: NULL
 rows: 1301
 Extra: Using index for
group-by
3 rows in set (0.01 sec)

********** 1. row **********
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 599
 Extra:

************** 2. row **************
 id: 1
 select_type: PRIMARY
 table: payment
 type: ref
possible_keys:
idx_fk_customer_id,customer_id_pay
 key: customer_id_pay
 key_len: 10
 ref: last_orders.customer_id,
last_orders.last_order
 rows: 1
 Extra:

************ 3. row ************
 id: 2
 select_type: DERIVED
 table: payment
 type: range
possible_keys: NULL
 key: customer_id
 key_len: 2
 ref: NULL
 rows: 1301
 Extra: Using index for
group-by
3 rows in set (0.01 sec)

************ 1. row ************
 id: 1
 select_type: PRIMARY
 table: pay_outer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16374
 Extra: Using where

******************** 2. row ********************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: pay_inner
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.pay_outer.customer_id
 rows: 14
 Extra:
2 rows in set (0.00 sec)

Join-fu

http://joinfu.com/presentations/joinfu/joinfu_part_one.pdf

- p 22, mapping tables

http://joinfu.com/presentations/joinfu/joinfu_part_two.pdf

- heirarchies/graphs/nested sets

- GIS calculations

- reporting/aggregates/ranks

With thanks to Jay Pipes!

Questions? Comments?
OurSQL Podcast

www.oursql.com

MySQL Administrator's Bible

 - tinyurl.com/mysqlbible

kimtag.com/mysql

planet.mysql.com

