

Best Practices Ideas for DBAs

Sheeri Cabral
Senior DB Admin/Architect, Mozilla

@sheeri www.sheeri.com
OurSQL Podcast www.oursql.com

http://www.sheeri.com/
file:///Users/scabral/Documents/presentations/mine/

MIRE

● Make It Really Easy

● Automate

● Document

● As for your brain......

Use your brain for CPU, not storage!

(use a request tracking system!)

Monitoring Basics

● Graph (Cacti)

● Alert (Nagios)

● Oracle Grid Control

● Check your checks

Tradeoffs

● Tradeoffs always exist

● Think about them

Most Commonly Given Advice

● Backup

● Restore

● What do you use backups for?

In Case of Failure.....

● Restore from backup
● Master/Slave
● Master/Master
● Cluster

DR? HA!

● Test your DR/HA plans

● What scenarios do they cover?

● What scenarios do they NOT cover?

Ounces of Prevention

● Configuration vs. reality

● Possible memory usage

● Disk space / tablespace size

Pounds of Cure

● Error Logs

● Slow Query Logs

● Query Review

mysqldumpslow

Count: 1 Time=12772.00s (12772s) Lock=0.00s (0s)

 Rows=59493.0 (59493), prod[prod]@[192.168.217.53]

 select * from properties_new prop left join nodes node on prop.node_id
= node.id where node.class_type = 'S' and qname like 'S' and node_id
not in (select ancestor from history_links) and node.id >= N order
by node_id

Count: 7 Time=160.57s (1124s) Lock=0.00s (0s) Rows=5567304.1
(38971129), test[test]@localhost SELECT /*!N SQL_NO_CACHE */ * FROM
`properties_new`

Count: 2 Time=51.00s (102s) Lock=0.00s (0s) Rows=0.0 (0),
prod[prod]@[192.168.217.53]

 update nodes set vers=N, version_id=N, guid='S', creator='S',
owner='S', lastModifier='S', createDate=N, modDate=N, accessDate=N,
is_root=N, store_new_id=null, acl_id=null where id=N and vers=N

Count: 7 Time=32.00s (224s) Lock=0.00s (0s) Rows=698414.6 (4888902),
test[test]@localhost

 SELECT /*!N SQL_NO_CACHE */ * FROM `nodes`

Reading slow log '/opt/mysql/mysql/data/mysql-slow.log'.
25851 total queries, 291 unique.
Sorting by 'at'.

__ 001 ___

Count : 2 (0%)
Time : 19677 s total, 9838 s avg, 6905 s to 12772 s max
95% of Time : 6905 s total, 6905 s avg, 6905 s to 6905 s max
Lock Time : 0 s total, 0 s avg, 0 s to 0 s max
Rows sent : 29746 avg, 0 to 59493 max
Rows examined : 75011 avg, 0 to 150023 max
User : user1@/192.168.217.53 (96%)
Database : Unknown

SELECT * FROM properties_new prop LEFT JOIN nodes node ON prop.node_id =
node.id WHERE node.class_type = 'S' AND qname LIKE 'S' AND node_id NOT IN
(S0) AND node.id >= N ORDER BY node_id;

__ 002 __

Count : 13 (0%)
Time : 24042 s total, 1849 s avg, 5 s to 19839 s max
95% of Time : 4203 s total, 350 s avg, 5 s to 2055 s max
Lock Time : 0 s total, 0 s avg, 0 s to 0 s max
Rows sent : 7692 avg, 0 to 100000 max
Rows examined : 32573 avg, 0 to 423454 max
User : prod@/196.168.217.53 (96%)
Database : prod

SELECT * FROM properties_new prop LEFT JOIN nodes node ON prop.node_id =
node.id WHERE node.class_type = 'S' AND qname LIKE 'S' AND node_id NOT IN
(S0) AND node.id >= N ORDER BY node_id LIMIT N;

Query Profile

● pt-query-profiler

Press <ENTER> when the external program is finished
+--+
| 1 (476.2167 sec) |
+--+
__ Overall stats _______________________ Value _____________
 Total elapsed time 476.217
 Questions 5431
 COMMIT 1723
 DELETE 8
 DELETE MULTI 0
 INSERT 8
 INSERT SELECT 0
 REPLACE 0
 REPLACE SELECT 0
 SELECT 2833
 UPDATE 0
 UPDATE MULTI 0
 Data into server 884177
 Data out of server 1013231

__ Table and index accesses ____________ Value _____________
 Table locks acquired 3959
 Table scans 26
 Join 0
 Index range scans 0
 Join without check 0
 Join with check 0
 Rows sorted 17489
 Range sorts 203
 Merge passes 0
 Table scans 21
 Potential filesorts 11

Query Profile

● pt-query-profiler

● SHOW STATUS before and after

● mysqltuner

MySQL 5.0.45-log uptime 52 21:53:13 Tue Apr 15 14:37:23 2008

__ Key ___
Buffer used 2.16M of 16.00M %Used: 13.51
 Current 3.32M %Usage: 20.73
Write hit 0.00%
Read hit 100.00%

__ Questions ___
Total 84.87M 18.6/s
 DMS 48.18M 10.5/s %Total: 56.77
 Com_ 36.54M 8.0/s 43.06
 COM_QUIT 143.59k 0.0/s 0.17
 +Unknown 581 0.0/s 0.00
Slow (4) 799 0.0/s 0.00 %DMS: 0.00 Log: ON
DMS 48.18M 10.5/s 56.77
 SELECT 47.88M 10.5/s 56.42 99.37
 INSERT 165.96k 0.0/s 0.20 0.34
 DELETE 79.91k 0.0/s 0.09 0.17
 UPDATE 55.47k 0.0/s 0.07 0.12
 REPLACE 23 0.0/s 0.00 0.00
Com_ 36.54M 8.0/s 43.06
 commit 24.27M 5.3/s 28.59
 set_option 11.57M 2.5/s 13.63
 rollback 543.18k 0.1/s 0.64

__ SELECT and Sort ___
Scan 472.67k 0.1/s %SELECT: 0.99
Range 9.49k 0.0/s 0.02
Full join 4.94k 0.0/s 0.01
Range check 0 0/s 0.00
Full rng join 146.47k 0.0/s 0.31
Sort scan 194.32k 0.0/s
Sort range 2.80M 0.6/s
Sort mrg pass 10.12k 0.0/s

__ Table Locks ___
Waited 0 0/s %Total: 0.00
Immediate 1.12k 0.0/s

__ Tables __
Open 422 of 1000 %Cache: 42.20
Opened 7.16k 0.0/s

__ Connections ___
Max used 42 of 100 %Max: 42.00
Total 143.59k 0.0/s

__ Created Temp __
Disk table 9.32k 0.0/s
Table 238.23k 0.1/s Size: 32.0M
File 32 0.0/s

__ Threads ___
Running 2 of 42
Cached 0 of 0 %Hit: 0
Created 143.59k 0.0/s
Slow 0 0/s

__ Aborted ___
Clients 0 0/s
Connects 0 0/s

__ Bytes ___
Sent 2.83G 620.1/s
Received 2.81G 614.6/s

__ InnoDB Buffer Pool __
Usage 1.00G of 1.00G %Used: 100.00
Read hit 99.84%
Pages
 Free 1 %Total: 0.00
 Data 63.90k 97.50 %Drty: 0.00
 Misc 1638 2.50
 Latched 0 0.00
Reads 326.29M 71.4/s
 From file 515.08k 0.1/s 0.16
 Ahead Rnd 16422 0.0/s
 Ahead Sql 30699 0.0/s
Writes 21.52M 4.7/s
Flushes 631.57k 0.1/s
Wait Free 0 0/s

__ InnoDB Lock ___
Waits 0 0/s
Current 0
Time acquiring
 Total 0 ms
 Average 0 ms
 Max 0 ms

__ InnoDB Data, Pages, Rows __
Data
 Reads 787.19k 0.2/s
 Writes 1.35M 0.3/s
 fsync 1.16M 0.3/s
 Pending
 Reads 0
 Writes 0
 fsync 0

Pages
 Created 21.68k 0.0/s
 Read 2.19M 0.5/s
 Written 631.57k 0.1/s

Rows
 Deleted 4.64M 1.0/s
 Inserted 4.95M 1.1/s
 Read 1.81G 396.5/s
 Updated 32.92k 0.0/s

Query Profile

● pt-query-profiler

● SHOW STATUS before and after

● mysqlreport

● Is every index being used?

What Does This Query Do?

● SELECT amount, created FROM
payments where user='sheeri'

What Does This Query Do?

● SELECT amount, created FROM
payments where user='sheeri'

vs

● SELECT /* find payments for
customer */ amount, created FROM
payments where user='sheeri'

Data Profile

● PROCEDURE ANALYSE()

● What does each column, table do?

● What's in a name?

Does It Make Sense?

● Can you “read” the data?

● Question “best practices”

● Then, make some!

Schema Profile

● Start normal

● Denormalize if necessary
● Descriptive foreign keys can prevent denormalization

● Stored procedures for developers

Replication

● Be careful of TRIGGERs
– And any DML from SP or UDF

● Sync often with pt-table-sync

● Handle duplicates carefully

Maintenance

● Partition

● Archive

● Purge

● Static data

Manage User Expectations

● Constant report refreshes

● Aggregate data once every hour or 15 minutes

● Split off processing:
– customer/non-customer

– internal/external

Creative Suggestions – Forums

● COUNT(*) for paging

● LIMIT 0,n+1

● Cache each page of forum
– First page can have up to n+5 entries

Creative Suggestions – Calculations

● Limited set of calculations?
– Distance between zip codes in the US

● Calculate the same thing more than once?

● Calculating easy constants?

Foreign Keys

● Application still has to handle problems

And that's just ACL's!

Summary

When I Walk In the Door

● alerting

● request tracking

● graphing

● documentation

My Toolbox

● EXPLAIN

● Percona Toolkit

● mysqltuner

● MySQL Manual

Also Useful

● mytop

● innotop

Testing, Testing...is this thing on?

● Functional

● Load

● Start now!

Consider

● master/master vs. read_only slave

● Learn the foundations

● Semi-dynamic data

Redundancy

● Make everything replaceable
– Kickstart

– Automated config management

● Including yourself!
– Don't you want a vacation?

Be a Good DBA

● Prove your work to yourself

● Be clear

Questions? Comments?

scabral@mozilla.com

@sheeri

www.oursqlcast.com

MySQL Administrator's Bible

 - tinyurl.com/mysqlbible

kimtag.com/mysql

planet.mysql.com

Best Practices Ideas for DBAs

Sheeri Cabral
Senior DB Admin/Architect, Mozilla

@sheeri www.sheeri.com
OurSQL Podcast www.oursql.com

MIRE

● Make It Really Easy

● Automate

● Document

● As for your brain......

Checklists
documentation yes it takes WORK to make it easy!
automate
graph!

force yourself to check status and alert you about
errors. Don't rely on “get one e-mail per day per
machine” -- what happens if one machine doesn't e-
mail you, will you really see that?

Also, keep logs so you don't just log errors, you log
good status, and can compare.

Documentation that's out of date is bad, but that's why
you update it when it's wrong, or have others update
it when it's wrong.

Use your brain for CPU, not storage!

(use a request tracking system!)

Especially one you can SEARCH and create
documentation from.

Monitoring Basics

● Graph (Cacti)

● Alert (Nagios)

● Oracle Grid Control

● Check your checks

Graph:

memory usage
cpu load (TALK ABOUT LOAD AVERAGE ON LINUX)
of db threads
of logged on users
TCP connections
disk space & usage
disk space & usage that = logs, data, etc.
replication lag?
other important metrics – maybe how long it took a page to load?

best to be able to correlate events, regular and otherwise – nightly
spike = backup. That spike over there = weekly reports. That one
over there = end of semester final crunch on a Friday at 5 pm.

Monitor:
all the above, and anything notable. Don't rely on customers/clients.
Put reasonable thresholds. Do you really want to monitor every time

there's a slow query? What about an entry into the error log?

Also, be notified if your check doesn't work, somehow. NULL=bad!

Tradeoffs

● Tradeoffs always exist

● Think about them

Are you backing up for DR?
What about customer issue (ie, profile info)?
DROP TABLE recovery?
If you backup a slave are you keeping binary log

positions of master?
Are you flushing your binary logs?

Most Commonly Given Advice

● Backup

● Restore

● What do you use backups for?

Are you backing up for DR?
What about customer issue (ie, profile info)?
DROP TABLE recovery?
If you backup a slave are you keeping binary log

positions of master?
Are you flushing your binary logs?

Again, think about the tradeoffs – you can mysqldump
skipping the extended insert for easy grepping. But
you have to lock tables.

Hot backup good, but costs $$. mysqlhotcopy good
but only MyISAM. Backups good but take time to
restore.

In Case of Failure.....

● Restore from backup
● Master/Slave
● Master/Master
● Cluster

Break glass!

Seriously though – you probably don't just have one
disaster recovery scenario. If your development
database dies, you restore from backup, and have
downtime. If your production db dies, then what?
What about testing, and all that test data?

Raise your hand if you work with databases
Raise your hand if you have a plan, and KNOW what it

is for HA or DR or some kind of failure scenario.
Tell me what it is, if it's not on the slide
Raise your hand if you've practiced it somehow.

DR? HA!

● Test your DR/HA plans

● What scenarios do they cover?

● What scenarios do they NOT cover?

Test your failover by propagating your slave to a
master regularly – maybe when you have a schema
change or otherwise would need a downtime.

Test your HA when you can – maybe in a downtime
window, maybe not. But test, at least once every 6
months.

Nothing covers every scenario perfectly -
TRADEOFFS!!!. RAID disks because of disks dying.
 2 machines because 1 machine could die. 2
locations in case one loses power. What if someone
drops the database? What if you have data centers
in Boston and New York and power goes out for the
whole Eastern Seaboard? That surely is OK to be
without your service, yes?

Ounces of Prevention

● Configuration vs. reality

● Possible memory usage

● Disk space / tablespace size

Check that the config matches what's in the db. You
can write a script do to my_print_defaults and
compare with SHOW VARIABLES and SHOW
STATUS.

Possible memory usage: will you get a “sort aborted”
or a crash due to possible total memory usage?
Keep tabs on actual memory usage and compare.

How fast does your data grow?

Autoextend is great but do you really want a 100G
innodb data file? Cap it with “max”. And of course
monitor innodb free space. Make sure data and logs
are sized appropriately! Also use
innodb_file_per_table if you're going to have large
innodb tables.

Pounds of Cure

● Error Logs

● Slow Query Logs

● Query Review

Look at these frequently.

Error logs – can show table corruption, network issues w/ dropped
error connections, replication issues, etc.

slow query logs – mysqldump slow or mysqlsla!!!

Query review – like a code review. See if you can get a formal
process, if not, you can always do it informally. “I noticed you have
this query, if you're trying to do X then why not use Y? Or are you
trying to do something else?

Query review -- can be done any time, any where. Can use general
log, application debug, or my personal favorite – mysql-proxy with
adaptivity.

THERE IS NO PERFECT QUERY – this is a good place to think of
tradeoff issues. What happens when the dataset gets very large?
What indexes should you have now? How can you
partition/purge?

mysqldumpslow

Count: 1 Time=12772.00s (12772s) Lock=0.00s (0s)

 Rows=59493.0 (59493), prod[prod]@[192.168.217.53]

 select * from properties_new prop left join nodes node on prop.node_id
= node.id where node.class_type = 'S' and qname like 'S' and node_id
not in (select ancestor from history_links) and node.id >= N order
by node_id

Count: 7 Time=160.57s (1124s) Lock=0.00s (0s) Rows=5567304.1
(38971129), test[test]@localhost SELECT /*!N SQL_NO_CACHE */ * FROM
`properties_new`

Count: 2 Time=51.00s (102s) Lock=0.00s (0s) Rows=0.0 (0),
prod[prod]@[192.168.217.53]

 update nodes set vers=N, version_id=N, guid='S', creator='S',
owner='S', lastModifier='S', createDate=N, modDate=N, accessDate=N,
is_root=N, store_new_id=null, acl_id=null where id=N and vers=N

Count: 7 Time=32.00s (224s) Lock=0.00s (0s) Rows=698414.6 (4888902),
test[test]@localhost

 SELECT /*!N SQL_NO_CACHE */ * FROM `nodes`

Look at these frequently.

Error logs – can show table corruption, network issues w/ dropped
error connections, replication issues, etc.

slow query logs – mysqldump slow or mysqlsla!!!

Query review – like a code review. See if you can get a formal
process, if not, you can always do it informally. “I noticed you have
this query, if you're trying to do X then why not use Y? Or are you
trying to do something else?

Query review -- can be done any time, any where. Can use general
log, application debug, or my personal favorite – mysql-proxy with
adaptivity.

THERE IS NO PERFECT QUERY – this is a good place to think of
tradeoff issues. What happens when the dataset gets very large?
What indexes should you have now? How can you
partition/purge?

Reading slow log '/opt/mysql/mysql/data/mysql-slow.log'.
25851 total queries, 291 unique.
Sorting by 'at'.

__ 001 ___

Count : 2 (0%)
Time : 19677 s total, 9838 s avg, 6905 s to 12772 s max
95% of Time : 6905 s total, 6905 s avg, 6905 s to 6905 s max
Lock Time : 0 s total, 0 s avg, 0 s to 0 s max
Rows sent : 29746 avg, 0 to 59493 max
Rows examined : 75011 avg, 0 to 150023 max
User : user1@/192.168.217.53 (96%)
Database : Unknown

SELECT * FROM properties_new prop LEFT JOIN nodes node ON prop.node_id =
node.id WHERE node.class_type = 'S' AND qname LIKE 'S' AND node_id NOT IN
(S0) AND node.id >= N ORDER BY node_id;

Look at these frequently.

Error logs – can show table corruption, network issues w/ dropped
error connections, replication issues, etc.

slow query logs – mysqldump slow or mysqlsla!!!

Query review – like a code review. See if you can get a formal
process, if not, you can always do it informally. “I noticed you have
this query, if you're trying to do X then why not use Y? Or are you
trying to do something else?

Query review -- can be done any time, any where. Can use general
log, application debug, or my personal favorite – mysql-proxy with
adaptivity.

THERE IS NO PERFECT QUERY – this is a good place to think of
tradeoff issues. What happens when the dataset gets very large?
What indexes should you have now? How can you
partition/purge?

__ 002 __

Count : 13 (0%)
Time : 24042 s total, 1849 s avg, 5 s to 19839 s max
95% of Time : 4203 s total, 350 s avg, 5 s to 2055 s max
Lock Time : 0 s total, 0 s avg, 0 s to 0 s max
Rows sent : 7692 avg, 0 to 100000 max
Rows examined : 32573 avg, 0 to 423454 max
User : prod@/196.168.217.53 (96%)
Database : prod

SELECT * FROM properties_new prop LEFT JOIN nodes node ON prop.node_id =
node.id WHERE node.class_type = 'S' AND qname LIKE 'S' AND node_id NOT IN
(S0) AND node.id >= N ORDER BY node_id LIMIT N;

Look at these frequently.

Error logs – can show table corruption, network issues w/ dropped
error connections, replication issues, etc.

slow query logs – mysqldump slow or mysqlsla!!!

Query review – like a code review. See if you can get a formal
process, if not, you can always do it informally. “I noticed you have
this query, if you're trying to do X then why not use Y? Or are you
trying to do something else?

Query review -- can be done any time, any where. Can use general
log, application debug, or my personal favorite – mysql-proxy with
adaptivity.

THERE IS NO PERFECT QUERY – this is a good place to think of
tradeoff issues. What happens when the dataset gets very large?
What indexes should you have now? How can you
partition/purge?

Query Profile

● pt-query-profiler

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

Press <ENTER> when the external program is finished
+--+
| 1 (476.2167 sec) |
+--+
__ Overall stats _______________________ Value _____________
 Total elapsed time 476.217
 Questions 5431
 COMMIT 1723
 DELETE 8
 DELETE MULTI 0
 INSERT 8
 INSERT SELECT 0
 REPLACE 0
 REPLACE SELECT 0
 SELECT 2833
 UPDATE 0
 UPDATE MULTI 0
 Data into server 884177
 Data out of server 1013231

__ Table and index accesses ____________ Value _____________
 Table locks acquired 3959
 Table scans 26
 Join 0
 Index range scans 0
 Join without check 0
 Join with check 0
 Rows sorted 17489
 Range sorts 203
 Merge passes 0
 Table scans 21
 Potential filesorts 11

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

Query Profile

● pt-query-profiler

● SHOW STATUS before and after

● mysqltuner

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

MySQL 5.0.45-log uptime 52 21:53:13 Tue Apr 15 14:37:23 2008

__ Key ___
Buffer used 2.16M of 16.00M %Used: 13.51
 Current 3.32M %Usage: 20.73
Write hit 0.00%
Read hit 100.00%

__ Questions ___
Total 84.87M 18.6/s
 DMS 48.18M 10.5/s %Total: 56.77
 Com_ 36.54M 8.0/s 43.06
 COM_QUIT 143.59k 0.0/s 0.17
 +Unknown 581 0.0/s 0.00
Slow (4) 799 0.0/s 0.00 %DMS: 0.00 Log: ON
DMS 48.18M 10.5/s 56.77
 SELECT 47.88M 10.5/s 56.42 99.37
 INSERT 165.96k 0.0/s 0.20 0.34
 DELETE 79.91k 0.0/s 0.09 0.17
 UPDATE 55.47k 0.0/s 0.07 0.12
 REPLACE 23 0.0/s 0.00 0.00
Com_ 36.54M 8.0/s 43.06
 commit 24.27M 5.3/s 28.59
 set_option 11.57M 2.5/s 13.63
 rollback 543.18k 0.1/s 0.64

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

__ SELECT and Sort ___
Scan 472.67k 0.1/s %SELECT: 0.99
Range 9.49k 0.0/s 0.02
Full join 4.94k 0.0/s 0.01
Range check 0 0/s 0.00
Full rng join 146.47k 0.0/s 0.31
Sort scan 194.32k 0.0/s
Sort range 2.80M 0.6/s
Sort mrg pass 10.12k 0.0/s

__ Table Locks ___
Waited 0 0/s %Total: 0.00
Immediate 1.12k 0.0/s

__ Tables __
Open 422 of 1000 %Cache: 42.20
Opened 7.16k 0.0/s

__ Connections ___
Max used 42 of 100 %Max: 42.00
Total 143.59k 0.0/s

__ Created Temp __
Disk table 9.32k 0.0/s
Table 238.23k 0.1/s Size: 32.0M
File 32 0.0/s

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

__ Threads ___
Running 2 of 42
Cached 0 of 0 %Hit: 0
Created 143.59k 0.0/s
Slow 0 0/s

__ Aborted ___
Clients 0 0/s
Connects 0 0/s

__ Bytes ___
Sent 2.83G 620.1/s
Received 2.81G 614.6/s

__ InnoDB Buffer Pool __
Usage 1.00G of 1.00G %Used: 100.00
Read hit 99.84%
Pages
 Free 1 %Total: 0.00
 Data 63.90k 97.50 %Drty: 0.00
 Misc 1638 2.50
 Latched 0 0.00
Reads 326.29M 71.4/s
 From file 515.08k 0.1/s 0.16
 Ahead Rnd 16422 0.0/s
 Ahead Sql 30699 0.0/s
Writes 21.52M 4.7/s
Flushes 631.57k 0.1/s
Wait Free 0 0/s

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

__ InnoDB Lock ___
Waits 0 0/s
Current 0
Time acquiring
 Total 0 ms
 Average 0 ms
 Max 0 ms

__ InnoDB Data, Pages, Rows __
Data
 Reads 787.19k 0.2/s
 Writes 1.35M 0.3/s
 fsync 1.16M 0.3/s
 Pending
 Reads 0
 Writes 0
 fsync 0

Pages
 Created 21.68k 0.0/s
 Read 2.19M 0.5/s
 Written 631.57k 0.1/s

Rows
 Deleted 4.64M 1.0/s
 Inserted 4.95M 1.1/s
 Read 1.81G 396.5/s
 Updated 32.92k 0.0/s

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

Query Profile

● pt-query-profiler

● SHOW STATUS before and after

● mysqlreport

● Is every index being used?

Again, tradeoffs. Think about rewriting queries to use
existing indexes, or changing the indexes to cover
more ground – not just adding one.

What Does This Query Do?

● SELECT amount, created FROM
payments where user='sheeri'

What Does This Query Do?

● SELECT amount, created FROM
payments where user='sheeri'

vs

● SELECT /* find payments for
customer */ amount, created FROM
payments where user='sheeri'

Data Profile

● PROCEDURE ANALYSE()

● What does each column, table do?

● What's in a name?

Could you be using better data types? When do you need BIGINT?
INT instead of varchar? Look out for things like “email” which
could use a “Reverse e-mail” column.

Is each column or table used? I worked at a company that had a
user profile, and their user table was 80 columns long and
growing. They had 2 columns for “user1” and “user2” for future
growth, but whenever they actually needed a new column they'd
ALTER the table to add a column, and have a downtime.

Also, does your field have a name like “Create date” when it's really
a timestamp, not a date? A good rule – don't put a data type in the
descriptor. Similarly, is it better to have different or the same
names for columns? Dot notation vs. ease of “USING” clauses.

Does each table have a timestamp column and a created column
and a row number? Why? With an 80 column table the
timestamp is rather useless. But other times its useful.

Same with surrogate keys. They're useful but you don't ALWAYS
need them. Ie, username :)

Does It Make Sense?

● Can you “read” the data?

● Question “best practices”

● Then, make some!

Is the data readable? Descriptive foreign keys are good for 2
reasons – 1, less joining and 2, you don't have to worry about what
“member_type=1” means. Is it human readable or just machine
readable? Consider things like unix timestamp versus real time, IP
addresses. Duplicate the data if you want the best of both worlds!

Does each table have a timestamp column and a created column
and a row number? Why? With an 80 column table the
timestamp is rather useless. But other times its useful.

Same with surrogate keys. They're useful but you don't ALWAYS
need them. Ie, username :)

Naming your columns, as we talked about before. CamelCase vs.
under_score may not matter, but do you really want to have to run
SHOW CREATE TABLE because you forgot the difference?

There is no perfect solution, so again remember to think of the
tradeoffs!

Schema Profile

● Start normal

● Denormalize if necessary
● Descriptive foreign keys can prevent denormalization

● Stored procedures for developers

A lot of times developers don't want to join tables, and
say “why can't we just denormalize this right now?”
Denormalization is a fact in data warehouses and
reporting, but not in OLTP!

Often times a descriptive foreign key works well – ie,
status of an account is “paid” rather than “1”. Be
stingy with your tradeoffs here!

If there are some difficult queries and your developers
are happier using an ORM or simple queries, make it
easy for them – write a stored procedure, so you
control the query!

Replication

● Be careful of TRIGGERs
– And any DML from SP or UDF

● Sync often with pt-table-sync

● Handle duplicates carefully

Maintenance

● Partition

● Archive

● Purge

● Static data

At some point you will have a table that's really large.
How could you partition it?

If you need to keep around legacy data for reporting, it
doesn't need to be all on one server. For things like
“orders in 2006” you can have a server that has the
2006 information. If you need to do some combined
reporting you can have current information replicated
to the reporting server. Or, aggregate what you need
and put that on the reporting server.

Static data like lookup tables should always be in a
different db so you can move the info if necessary,
and for easier backup – you don't need to backup
your list of what streets are in what city every single
night. You can do it once a month.

Manage User Expectations

● Constant report refreshes

● Aggregate data once every hour or 15 minutes

● Split off processing:
– customer/non-customer
– internal/external

Even though management is your customer, and even
though you may have customers who use your db for
their end-user customer, don't let reporting get in the
way of end-user functionality!

I've done this by having caveats in the programming
code that the reports can't be run during the busy
time in the code. Could also use proxy to do that, or
to send it to a particular server when it's a reporting
query.

My bank isn't always up to the second and it has my
MONEY in it! Can't users wait for the total # of their
posts to be calculated every hour?

Or use TRIGGERS, but re-sync!

Creative Suggestions – Forums

● COUNT(*) for paging

● LIMIT 0,n+1

● Cache each page of forum
– First page can have up to n+5 entries

Standard count(*) for paging does it backwards. The
oldest forum post will always be the oldest forum
post.

For the initial page, limit 0,21 if you're paging by 20's.
Then, you can have the correct arrow, and while the
first 20 posts are being read you can do your select
count(*) and store that as a variable.

Another way to do it is that the last 20 posts are always
the last page, posts 40-21 are always the 2nd to last
page, etc. It would look odd to have only 1 or 2
posts on a page, so have the first page able to have
up to 25 posts.

Creative Suggestions – Calculations

● Limited set of calculations?
– Distance between zip codes in the US

● Calculate the same thing more than once?

● Calculating easy constants?

Calculating easy constants – are you using
“CURRENT_DATE()” instead of just using your app
to put the number in there? Especially if you're
comparing things.....

Foreign Keys

● Application still has to handle problems

And that's just ACL's!

Summary

When I Walk In the Door

● alerting

● request tracking

● graphing

● documentation

If it's not there, I put it in place. If there isn't a
“company approved” solution I just say “This is for
the db team only” 'cause we have jurisdiction....every
single time it's been so useful others have taken to
using it.

My Toolbox

● EXPLAIN

● Percona Toolkit

● mysqltuner

● MySQL Manual

Also Useful

● mytop

● innotop

Testing, Testing...is this thing on?

● Functional

● Load

● Start now!

Know what you're looking for, too, because everything
has a breaking point, and you need to know what's
sensible.

How long does it take to make a user? 1,000 users in
1 minute? What is current site usage and the user
perception? And of course what the graphs show.

Consider

● master/master vs. read_only slave

● Learn the foundations

● Semi-dynamic data

If you have a read_only slave, failover is harder. Why
not user master/master replication, and just point to
one server? Helps with schema changes, etc.

Knowing the foundation – if you know what a B-tree is,
and that that's how MySQL stores it's data and non-
memory indexes, you'll understand why queries work
the way they do, and why range searches are good
on B-trees.

Semi-dynamic data – when it comes to “store in a
config file so the app can read it” or “store in the db
so it's easy to change” why not do both? Have the
db propogate to the file.

Redundancy

● Make everything replaceable
– Kickstart
– Automated config management

● Including yourself!
– Don't you want a vacation?

If you document what you do, and be transparent,
you'll find that people appreciate it more. Whether or
not they understand what you write, it's there, and if
you need a 2nd set of eyes it becomes much easier.

Documentation isn't a project, a one-off thing. There
might be a large effort to start. But there's constant
updating needed, and you also need to train people
to use it.

Be a Good DBA

● Prove your work to yourself

● Be clear

Ie, confirm it as an underling would. Don't just GRANT
permissions, try to login as that user!

Also, if you're asked to create a user, don't just say
“done”. Write back and say “I've created the user foo
that has access to the database bar, you should be
able to login from baz now.”

Questions? Comments?

scabral@mozilla.com

@sheeri

www.oursqlcast.com

MySQL Administrator's Bible

 - tinyurl.com/mysqlbible

kimtag.com/mysql

planet.mysql.com

