Time Zones and MySQL

Pythian

Sheeri K. Cabral
Iove your data

ISO SQL:2003 Standard Datetime

« Standard data types (supported by MySQL):

_ DATE
_ TIME(p)
~ TIMESTAMP(p)

« Standard attributed (not supported by MySQL):

— WITH TIME ZONE
— WITHOUT TIME ZONE

Pythian

MySQL Additional data types

. YEAR(2)
. YEAR(4)

— If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

 DATETIME

Pythian

MySQL Datetime data types

* DATE — 3 bytes 1000-01-01 to 9999-12-31
 DATETIME — 8 bytes
—1000-01-01 00:00:00 to 9999-12-31 23:59:59

 TIMESTAMP — 4 bytes
—1970-01-01 00:00:00 to 2038-01-18 22:14:07

* TIME — 3 bytes -838:59:59 to 838:59:58
* YEAR(2) — 1 byte 00 to 99
* YEAR(4) — 1 byte 1901 to 2155

Pythian

Time Zones in MySQL Data Types

* Not supported

* However, TIMESTAMP is stored transparently in
UTC.

— Uses the time_zone system variable to convert

— When retrieved, converts to current time_zone value
In the server

— 1f '2009-05-08 17:00:00' is stored when time_zone is
set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'

Pythian

TIMESTAMP stored in UTC

CREATE TABLE time test (
ts TIMESTAMP,

dt DATETIME

) ENGINE=MyISAM;

INSERT INTO time test (ts,dt)
VALUES (NOW () ,NOW()) ;

SELECT * FROM time test;

{change time zone, look again}

The mysqgld time zone

« When mysqld starts, it finds the OS time zone and
sets system_ time zone system variable

» By default, the time_zone system variable is set to
SYSTEM, and system_time zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!

Pythian

Getting the current datetime

« CURRENT_TIMESTAMP() is the ISO:SQL 2003
standard function, and is supported by MySQL

» NOW() is an alias to CURRENT _TIMESTAMP

mysgl> SELECT NOW (), SLEEP (5),NOW () \G

IR AR R A b g A g i A i A i A A i i i i i i ¢ 1 rOw IR AR R A b g A g i A i A i A A i i i g i i ¢

NOW () : 2009-12-01 21:42:25

SLEEP (5): O
NOW () : 2009-12-01 21:42:25
1 row 1n set (5.00 sec)

« CURRENT_TIMESTAMP() is replication-safe.

— It is calculated at the beginning of a statement and
used throughout the statement.

Pythian

Getting the current datetime

« UTC _TIMESTAMP() is replication-safe and based
on CURRENT _TIMESTAMP

mysql> SELECT
UTC TIMESTAMP (), SLEEP (5),UTC TIMESTAMP () \G

R R R R R R R R R R R R R E R 1 TrOw IR A R A e b b b I b b A i A A i i i i i i ¢

NOW () : 2009-12-01 21:43:12
SLEEP(5): O

NOW () : 2009-12-01 21:43:12
1 row 1n set (5.00 sec)

» Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.

Pythian

Getting the current datetime

« SYSDATE() is very familiar to Oracle DBA's/devV's.

mysqgl> SELECT SYSDATE (), SLEEP (5), SYSDATE () \G

IR AR R A b G A i i i i A i A A i i i g i i ¢ 1 rOw IR AR R A e G A i i i i A i i A i i i g i i ¢

SYSDATE () : 2009-12-01 21:44:39
SLEEP (5): O
SYSDATE () : 2009-12-01 21:44:44

1 row 1n set (5.00 sec)

« SYSDATE() is, by default, not safe for replication

— It uses the system date and time
— |t is calculated on an as-needed basis

— Will produce different values on a master and slave if
the slave's time zone is different

Pythian

Making SYSDATE() act like NOW()

 sysdate-is-now
— static system variable, must restart the server

— Does not show up in SHOW VARIABLES (or SHOW
STATUS)

_ SYSDATE() acts like CURRENT TIMESTAMP() and
NOW()

— default is off

Pythian

Sources of Information

* |f the web/application server has a different time
zone than the [master] database server, that can
cause problems.

 Webserver: GMT
« Database server: EST (GMT-5)
 An order comes in on Dec. 31%, 2009 at 10 pm EST

* If the web/application server determines the time,
the order will be logged in Jan 2010

e |f the database server determines the time, the
order will be logged in Dec 2009

Pythian

Ways to Convert in MySQL

« CONVERT TZ to convert times

— CONVERT _TZ(<time>,<convert_from> <convert to>
— CONVERT_TZ(NOW(),'-5:00",'+0:00");
— Offset is from UTC

« Daylight Saving Time can wreak havoc
— The day DST occurs is different for different countries

Pythian

“It's all local” approach

« Just store the times and dates as local time.

— Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

* This can skew reporting, particularly when
estimating peak times.

* This Is problematic when a user's perspective
changes to a different time zone.

— My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.

Pythian

“It's all local” conversion

« Example: Storing 2 different events, at the same
absolute time, in EST and CST-:

CREATE TABLE store times (

st datetime, -

os tinyint,

tz wvarchar (o)) ENGINE=MyISAM;

INSERT INTO store times (dt, os, tz) VALUES
(NOW()r _51 'EST')r (NOW()r _61 'CST');

TIMEDIFE (NOW () ,UTC TIMESTAMP ()); —--offset
SELECT CONCAT (dt + INTERVAL os HOUR,

! V, tz)
FROM store times;

Pythian

“It all works out” approach

 Just store the times and dates one way, and if the
data is not 100% accurate for “what day/hour did
this come In”, it's still precise, relatively accurate.

— 3 pm PST and 6 pm EST are “the same time”
* For most companies, relative time is important

— It's often less important to know that “3 — 6 pm is
peak time in each time zone” and more important to

know that “peak time is 3

pm—9 pm EST".

— Any day or year straddling is consistent — the most

important thing is not to c
you make it. If it's midnig
order will be considered t

nange your cutoff once
Nt EST, thena 10 pm PST

ne next day, but it will

always be considered such.

Pythian

“Store it all in GMT” approach

« Conversion for storing/retrieving events not in GMT

* |t is easier to let a user change their display
preference

» Application-aware reports may not match
application-unaware reports

— Peak application traffic may be offset with peak
network traffic, CPU load, etc.

« Daylight Saving Time can still be an issue

— When you “fall back”, 2x volume between 2-3 am
— Not as much of an issue when you “spring ahead”

Pythian

“Store it all in UTC” approach

 All time values are converted for storage/retrieval
« Harder to set up properly

« May be the only way to have true unified reporting

— Most companies do not want nor need to spend the
time and effort necessary for this.

Pythian

What most companies do

« By default, the “it will all work out approach”

* If they need to re-consider, “Store it all in GMT”

Problems

* When the server time zone changes
— Stop MySQL, change time zone, start mysq|

* When the application server(s) and web server(s)
are different times from each other or the
database server(s).

« \What do 2 events at the same time mean?

— Same server time —ie, 6 pm EST =5 pm CST
— Same local time —ie, 6 pm EST =6 pm CST
— Same time as HQ or “where reports are run from”?

Pythian

The mysqld time zone (repeated slide)

« When mysqld starts, it finds the OS time zone and
sets system_ time zone system variable

» By default, the time_zone system variable is set to
SYSTEM, and system_time zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!

Pythian

Changing the default MySQL time zone

» Set the timezone option to mysqld _safe:

[mysgld safe]
timezone=tz name

 Or set the TZ environment variable before starting
MySQL

» Values are system-dependent
« SET GLOBAL time zone=timezone

Pythian

Changing a session's MySQL time zone

« Changing the session affects time values:

SET SESSION time zone="-8:00";
SELECT NOW () ,UTC TIMESTAMP () ;
SELECT * FROM time test;

SELECT @@global time zone, (@@session.time zone;

— Changes for the session only
— Affects NOW(), SYSDATE() and TIMESTAMP
— Does not affect UTC_TIMESTAMP(), DATETIME

Pythian

Using Named Time Zones

 Named time zone = “US/Eastern” or “EST”

« Load information into the mysql system database:
—time_zone (tz_id, use leap_seconds)
— time_zone _name (iz_id, name)
—time_zone leap second (transition_time, correction)
—time_zone_transition (tz_id, transition_time, tt_id)

—time_zone_transition_type (tz _id, tt_id, offset, is_dst,
abbreviation)

Pythian

Loading Time Zone Info

« Some OS have time zone info, in a directory like
/usr/share/zoneinfo

— Linux

— Sun Solaris
— FreeBSD

— Mac OS X

» Use the following command:
mysql tzinfo to sql /usr/share/zoneinfo | mysqgl -u user -p mysq|

* Or download MylSAM tables from
http://dev.mysql.com/downloads/timezones.html

» Reload periodically (in 2007 DST dates changed)

Pythian

Loading Time Zone Info

$ mysql tzinfo_to sql /usr/share/zoneinfo > tz.sql

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh87' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time
zone. Skipping it.

$ mysql -u root -p mysql < tz.sql

Pythian

Testing Time Zone Info

SELECT time_zone_id FROM time_zone_name where
name='US/Eastern'\G

SELECT offset, is DST, abbreviation FROM time_zone_transition_type
where time_zone id=561;

Fom——— Fom——— o - +
| offset | 1s DST | Abbreviation |
————— ——————— ——_—— = +
-14400	1	EDT
=18000	O	EST
-14400	1	EWT
-14400	1	EPT
——— ——— ——_—_———————— +
4 rows 1n set (0.00 sec)

SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone="US/Central”;
SELECT NOW(), TIMEDIFF(NOW(),UTC_TIMESTAMP();

Pythian

CONVERT TZ

« Can use offsets:
SELECT CONVERT_TZ(NOW(),'—5:00','+O:OO');

« Can use named time zones if the time zone tables
are loaded:

« Can mix both:

SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');

» Can use session/global variables:

Can mix both:
SELECT NOW(), UTC TIMESTAMP,

CONVERT TZ (NOW(),@@session.time zone, '+0:00");

Pythian

Most importantly....

» Be careful!
* Do not forget about existing data

« Mass-conversions can be done like:
UPDATE tbl SET fld=fld+INTERVAL offset HOUR

« Oruse INTERVAL offset SECOND and the
information from mysql.time_zone transition_type

 only replicated properly in MySQL 5.0+:

CONVERT TZ (NOW (), @@session.time zone, '+0:00");

Pythian

Learn more...

« Experiment and test

» Especially with master/slave and different time
Zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html

01/15/10

Time Zones and MySQL

Presented by:
Sheeri K. Cabral

Pythian

ISO SQL:2003 Standard Datetime

+ Standard data types (supported by MySQL):
— DATE
— TIME(p)
— TIMESTAMP(p)
« Standard attributed (not supported by MySQL):

— WITH TIME ZONE
— WITHOUT TIME ZONE

Pythian

MySQL Additional data types

- YEAR(2)
- YEAR(4)

— If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

* DATETIME

Pythian

MySQL Datetime data types

* DATE — 3 bytes 1000-01-01 to 9999-12-31
* DATETIME — 8 bytes
—1000-01-01 00:00:00 to 9999-12-31 23:59:59

* TIMESTAMP — 4 bytes
—1970-01-01 00:00:00 to 2038-01-18 22:14:07

* TIME — 3 bytes -838:59:59 to 838:59:58
* YEAR(2) — 1 byte 00 to 99
* YEAR(4) — 1 byte 1901 to 2155

Pythian

Time Zones in MySQL Data Types

* Not supported

* However, TIMESTAMP is stored transparently in
UTC.
— Uses the time_zone system variable to convert

— When retrieved, converts to current time_zone value
in the server

— 1f '2009-05-08 17:00:00' is stored when time_zone is
set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'

TIMESTAMP stored in UTC

CREATE TABLE time test (
ts TIMESTAMP,

dt DATETIME

) ENGINE=MyISAM;

INSERT INTO time test (ts,dt)
VALUES (NOW () ,NOW()) ;

SELECT * FROM time test;

{change time zone, look again}

Pythian

The mysqld time zone

* When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable

* By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!

Pythian

Getting the current datetime

* CURRENT_TIMESTAMP() is the 1ISO:SQL 2003
standard function, and is supported by MySQL

* NOW() is an alias to CURRENT_TIMESTAMP

mysgl> SELECT NOW (), SLEEP (5),NOW () \G

B i b b b b b b i b b I b b b b g b b a4 l. rOw R b b b b b b b b b b i b b b b b b 4
NOW () : 2009-12-01 21:42:25

SLEEP (5): O
NOW () : 2009-12-01 21:42:25

1 row in set (5.00 sec)

* CURRENT_TIMESTAMP() is replication-safe.

— It is calculated at the beginning of a statement and
used throughout the statement.

Pythian

Getting the current datetime

*« UTC_TIMESTAMP() is replication-safe and based
on CURRENT_TIMESTAMP

mysqgl> SELECT
UTC TIMESTAMP (), SLEEP (5),UTC TIMESTAMP ()\G

Kk ok kkkkkkkhkkhkkkkhkxkkk*x 1 ro% LR R I I db i db i db b I b db b S db S db S 4

NOW () : 2009-12-01 21:43:12
SLEEP (5): O

NOW () : 2009-12-01 21:43:12
1 row in set (5.00 sec)

* Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.

Pythian

Getting the current datetime

* SYSDATE() is very familiar to Oracle DBA's/dev's.

mysql> SELECT SYSDATE (), SLEEP (5), SYSDATE () \G

B i b b b b b b i b b I b b b b g b b a4 l. rOw L I b e b b b b b b b b b b i b b b b b b 4
SYSDATE () : 2009-12-01 21:44:39

SLEEP (5): O

SYSDATE () : 2009-12-01 21:44:44

1 row in set (5.00 sec)

* SYSDATE() is, by default, not safe for replication
— It uses the system date and time
— It is calculated on an as-needed basis

— Will produce different values on a master and slave if
the slave's time zone is different

Making SYSDATE() act like NOW()

* sysdate-is-now
— static system variable, must restart the server

— Does not show up in SHOW VARIABLES (or SHOW
STATUS)

— SYSDATE() acts like CURRENT_TIMESTAMP() and
NOW()

— default is off

Sources of Information

If the web/application server has a different time
zone than the [master] database server, that can
cause problems.

Webserver: GMT
Database server: EST (GMT-5)
An order comes in on Dec. 31*, 2009 at 10 pm EST

If the web/application server determines the time,
the order will be logged in Jan 2010

If the database server determines the time, the
order will be logged in Dec 2009

Pythian

Ways to Convert in MySQL

« CONVERT _TZ to convert times
— CONVERT _TZ(<time>,<convert_from>,<convert_to>
— CONVERT_TZ(NOWY(),'-5:00','+0:00");
— Offset is from UTC

+ Daylight Saving Time can wreak havoc
— The day DST occurs is different for different countries

“It's all local” approach

» Just store the times and dates as local time.

— Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

 This can skew reporting, particularly when
estimating peak times.

* This is problematic when a user's perspective
changes to a different time zone.

— My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.

“It's all local” conversion

* Example: Storing 2 different events, at the same
absolute time, in EST and CST:

CREATE TABLE store times (

st datetime, -

os tinyint,

tz varchar (6)) ENGINE=MyISAM;

INSERT INTO store times (dt, os, tz) VALUES
(NOW (), -5, 'EST'), (NOwW(), -6, 'CST');

TIMEDIFF (NOW () ,UTC TIMESTAMP()); --offset
SELECT CONCAT (dt + INTERVAL os HOUR,

' |, tZ)
FROM store times;

Pythian

“It all works out” approach

+ Just store the times and dates one way, and if the
data is not 100% accurate for “what day/hour did
this come in”, it's still precise, relatively accurate.

—3 pm PST and 6 pm EST are “the same time”
* For most companies, relative time is important

— It's often less important to know that “3 — 6 pm is
peak time in each time zone” and more important to
know that “peak time is 3 pm — 9 pm EST".

— Any day or year straddling is consistent — the most
important thing is not to change your cutoff once
you make it. If it's midnight EST, then a 10 pm PST
order will be considered the next day, but it will
always be considered such.

“Store it all in GMT” approach

Conversion for storing/retrieving events not in GMT

It is easier to let a user change their display
preference

Application-aware reports may not match
application-unaware reports

— Peak application traffic may be offset with peak
network traffic, CPU load, etc.

Daylight Saving Time can still be an issue

— When you “fall back”, 2x volume between 2-3 am
— Not as much of an issue when you “spring ahead”

“Store it all in UTC” approach

« All time values are converted for storage/retrieval

» Harder to set up properly

* May be the only way to have true unified reporting

— Most companies do not want nor need to spend the
time and effort necessary for this.

What most companies do

* By default, the “it will all work out approach”

* If they need to re-consider, “Store it all in GMT”

Pythian

Problems

* When the server time zone changes
— Stop MySQL, change time zone, start mysq|

* When the application server(s) and web server(s)
are different times from each other or the
database server(s).

* What do 2 events at the same time mean?

— Same server time —ie, 6 pm EST =5 pm CST
— Same local time — ie, 6 pm EST =6 pm CST
— Same time as HQ or “where reports are run from”?

The mysqld time zone (repeated slide)

* When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable

* By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!

Pythian

Changing the default MySQL time zone

* Set the timezone option to mysqld_safe:

[mysqgld safe]
timezone=tz_name

* Or set the TZ environment variable before starting
MySQL

* Values are system-dependent
« SET GLOBAL time zone=timezone

Pythian

Changing a session's MySQL time zone

* Changing the session affects time values:

SET SESSION time zone="-8:00";
SELECT NOW(),UTC TIMESTAMP () ;

SELECT * FROM time test;
SELECT @@global time zone, (@@session.time zone;

— Changes for the session only
— Affects NOW(), SYSDATE() and TIMESTAMP
— Does not affect UTC_TIMESTAMP(), DATETIME

Using Named Time Zones

* Named time zone = “US/Eastern” or “EST”

* Load information into the mysql system database:
—time_zone (tz_id, use_leap_seconds)
—time_zone_name (tz_id, name)
—time_zone_leap_second (transition_time, correction)
—time_zone_transition (tz_id, transition_time, tt_id)

—time_zone_transition_type (iz_id, tt_id, offset, is_dst,
abbreviation)

Loading Time Zone Info

Some OS have time zone info, in a directory like
lusr/share/zoneinfo

— Linux
— Sun Solaris
— FreeBSD
—Mac OS X
Use the following command:
mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u user -p mysq|l

Or download MyISAM tables from
http://dev.mysqgl.com/downloads/timezones.html

Reload periodically (in 2007 DST dates changed)

Pythian

Loading Time Zone Info

$ mysql_tzinfo_to_sql /usr/share/zoneinfo > tz.sql

Warning: Unable to load 'fusr/share/zoneinfo/Asia/Riyadh87' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time
zone. Skipping it.

$ mysql -u root -p mysqgl < tz.sql

Pythian

Testing Time Zone Info

SELECT time_zone_id FROM time_zone_name where
name='US/Eastern'\G

SELECT offset, is_DST, abbreviation FROM time_zone_transition_type
where time_zone_id=561;

o o o —— +
| offset | is DST | Abbreviation |
o o e —— +
| =14400 | 1 | EDT
| =18000 | 0 | EST
| =14400 | 1 | EWT
| -14400 | 1 | EPT
e e e —— +

4 rows in set (0.00 sec)

SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone="US/Central”;
SELECT NOW(), TIMEDIFF(NOW(),UTC_TIMESTAMP();

Pythian

CONVERT_TZ

+ Can use offsets:

SELECT CONVERT TZ (NOW(),'-5:00","'+0:00");

« Can use named time zones if the time zone tables
are loaded:

+ Can mix both:

SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');

* Can use session/global variables:

Can mix both:
SELECT NOW (), UTC TIMESTAMP,

CONVERT TZ (NOW(),@@session.time zone, '+0:00'");

Pythian

Most importantly....

* Be careful!
* Do not forget about existing data

* Mass-conversions can be done like:
UPDATE tbl SET fld=f1d+INTERVAL offset HOUR

e Oruse INTERVAL offset SECOND and the
information from mysql.time_zone_transition_type

+ only replicated properly in MySQL 5.0+:

CONVERT TZ (NOW (), @@session.time zone, '+0:00');

Learn more...

» Experiment and test

+ Especially with master/slave and different time
zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html

Pythian

