
Time Z ones and M yS QL
Presented by:
Sheeri K. Cabral

ISO SQL:2003 Standard Datetime

• Standard data types (supported by MySQL):
– DATE
– TIME(p)
– TIMESTAMP(p)

• Standard attributed (not supported by MySQL):
– WITH TIME ZONE
– WITHOUT TIME ZONE

MySQL Additional data types

• YEAR(2)
• YEAR(4)

– If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

• DATETIME

MySQL Datetime data types

• DATE – 3 bytes 1000-01-01 to 9999-12-31
• DATETIME – 8 bytes

– 1000-01-01 00:00:00 to 9999-12-31 23:59:59
• TIMESTAMP – 4 bytes

– 1970-01-01 00:00:00 to 2038-01-18 22:14:07
• TIME – 3 bytes -838:59:59 to 838:59:58
• YEAR(2) – 1 byte 00 to 99
• YEAR(4) – 1 byte 1901 to 2155

Time Zones in MySQL Data Types

• Not supported
• However, TIMESTAMP is stored transparently in
UTC.

– Uses the time_zone system variable to convert
– When retrieved, converts to current time_zone value

in the server
– If '2009-05-08 17:00:00' is stored when time_zone is

set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'

TIMESTAMP stored in UTC

CREATE TABLE time_test (
ts TIMESTAMP,
dt DATETIME
) ENGINE=MyISAM;
INSERT INTO time_test (ts,dt)
VALUES (NOW(),NOW());
SELECT * FROM time_test;
{change time zone, look again}

The mysqld time zone

• When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable
• By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.
• If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.
• Only TIMESTAMP data type fields change.

– It bears repeating!

Getting the current datetime

• CURRENT_TIMESTAMP() is the ISO:SQL 2003
standard function, and is supported by MySQL
• NOW() is an alias to CURRENT_TIMESTAMP
 mysql> SELECT NOW(),SLEEP(5),NOW()\G
********************** 1. row **********************
 NOW(): 2009-12-01 21:42:25
SLEEP(5): 0
 NOW(): 2009-12-01 21:42:25
1 row in set (5.00 sec)

• CURRENT_TIMESTAMP() is replication-safe.
– It is calculated at the beginning of a statement and

used throughout the statement.

Getting the current datetime

• UTC_TIMESTAMP() is replication-safe and based
on CURRENT_TIMESTAMP
 mysql> SELECT
UTC_TIMESTAMP(),SLEEP(5),UTC_TIMESTAMP()\G
********************** 1. row **********************
 NOW(): 2009-12-01 21:43:12
SLEEP(5): 0
 NOW(): 2009-12-01 21:43:12
1 row in set (5.00 sec)

• Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.

Getting the current datetime

• SYSDATE() is very familiar to Oracle DBA's/dev's.
mysql> SELECT SYSDATE(),SLEEP(5),SYSDATE()\G
********************** 1. row **********************
SYSDATE(): 2009-12-01 21:44:39
 SLEEP(5): 0
SYSDATE(): 2009-12-01 21:44:44
1 row in set (5.00 sec)

• SYSDATE() is, by default, not safe for replication
– It uses the system date and time
– It is calculated on an as-needed basis
– Will produce different values on a master and slave if

the slave's time zone is different

Making SYSDATE() act like NOW()

• sysdate-is-now
– static system variable, must restart the server
– Does not show up in SHOW VARIABLES (or SHOW

STATUS)
– SYSDATE() acts like CURRENT_TIMESTAMP() and

NOW()
– default is off

Sources of Information

• If the web/application server has a different time
zone than the [master] database server, that can
cause problems.

• Webserver: GMT
• Database server: EST (GMT-5)
• An order comes in on Dec. 31st, 2009 at 10 pm EST
• If the web/application server determines the time,

the order will be logged in Jan 2010
• If the database server determines the time, the

order will be logged in Dec 2009

Ways to Convert in MySQL

• CONVERT_TZ to convert times
– CONVERT_TZ(<time>,<convert_from>,<convert_to>
– CONVERT_TZ(NOW(),'-5:00','+0:00');
– Offset is from UTC

• Daylight Saving Time can wreak havoc
– The day DST occurs is different for different countries

“It's all local” approach
• Just store the times and dates as local time.

– Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

• This can skew reporting, particularly when
estimating peak times.

• This is problematic when a user's perspective
changes to a different time zone.

– My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.

“It's all local” conversion
• Example: Storing 2 different events, at the same

absolute time, in EST and CST:
CREATE TABLE store_times (
st datetime,
os tinyint,
tz varchar(6)) ENGINE=MyISAM;
INSERT INTO store_times (dt, os, tz) VALUES
(NOW(), -5, 'EST'), (NOW(), -6, 'CST');

TIMEDIFF(NOW(),UTC_TIMESTAMP()); --offset
SELECT CONCAT(dt + INTERVAL os HOUR,
 ' ', tz)
 FROM store_times;

“It all works out” approach
• Just store the times and dates one way, and if the

data is not 100% accurate for “what day/hour did
this come in”, it's still precise, relatively accurate.

– 3 pm PST and 6 pm EST are “the same time”
• For most companies, relative time is important

– It's often less important to know that “3 – 6 pm is
peak time in each time zone” and more important to
know that “peak time is 3 pm – 9 pm EST”.

– Any day or year straddling is consistent – the most
important thing is not to change your cutoff once
you make it. If it's midnight EST, then a 10 pm PST
order will be considered the next day, but it will
always be considered such.

“Store it all in GMT” approach

• Conversion for storing/retrieving events not in GMT
• It is easier to let a user change their display

preference
• Application-aware reports may not match

application-unaware reports
– Peak application traffic may be offset with peak

network traffic, CPU load, etc.
• Daylight Saving Time can still be an issue

– When you “fall back”, 2x volume between 2-3 am
– Not as much of an issue when you “spring ahead”

“Store it all in UTC” approach

• All time values are converted for storage/retrieval

• Harder to set up properly

• May be the only way to have true unified reporting
– Most companies do not want nor need to spend the

time and effort necessary for this.

What most companies do

• By default, the “it will all work out approach”

• If they need to re-consider, “Store it all in GMT”

Problems

• When the server time zone changes
– Stop MySQL, change time zone, start mysql

• When the application server(s) and web server(s)
are different times from each other or the
database server(s).

• What do 2 events at the same time mean?
– Same server time – ie, 6 pm EST = 5 pm CST
– Same local time – ie, 6 pm EST = 6 pm CST
– Same time as HQ or “where reports are run from”?

The mysqld time zone (repeated slide)

• When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable
• By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.
• If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.
• Only TIMESTAMP data type fields change.

– It bears repeating!

Changing the default MySQL time zone
• Set the timezone option to mysqld_safe:
 [mysqld_safe]
 timezone=tz_name

• Or set the TZ environment variable before starting
MySQL
• Values are system-dependent
• SET GLOBAL time_zone=timezone

Changing a session's MySQL time zone

• Changing the session affects time values:
 SET SESSION time_zone=”-8:00”;
 SELECT NOW(),UTC_TIMESTAMP();
 SELECT * FROM time_test;
 SELECT @@global_time_zone, @@session.time_zone;

– Changes for the session only
– Affects NOW(), SYSDATE() and TIMESTAMP
– Does not affect UTC_TIMESTAMP(), DATETIME

Using Named Time Zones

• Named time zone = “US/Eastern” or “EST”
• Load information into the mysql system database:

– time_zone (tz_id, use_leap_seconds)
– time_zone_name (tz_id, name)
– time_zone_leap_second (transition_time, correction)
– time_zone_transition (tz_id, transition_time, tt_id)
– time_zone_transition_type (tz_id, tt_id, offset, is_dst,

abbreviation)

Loading Time Zone Info
• Some OS have time zone info, in a directory like

/usr/share/zoneinfo
– Linux
– Sun Solaris
– FreeBSD
– Mac OS X

• Use the following command:
mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u user -p mysql

• Or download MyISAM tables from
http://dev.mysql.com/downloads/timezones.html

• Reload periodically (in 2007 DST dates changed)

Loading Time Zone Info

$ mysql_tzinfo_to_sql /usr/share/zoneinfo > tz.sql
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh87' as time

zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time

zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time

zone. Skipping it.
$ mysql -u root -p mysql < tz.sql

Testing Time Zone Info
SELECT time_zone_id FROM time_zone_name where

name='US/Eastern'\G
SELECT offset, is_DST, abbreviation FROM time_zone_transition_type

where time_zone_id=561;
+--------+--------+--------------+
| offset | is_DST | Abbreviation |
+--------+--------+--------------+
-14400	1	EDT
-18000	0	EST
-14400	1	EWT
-14400	1	EPT
+--------+--------+--------------+
4 rows in set (0.00 sec)
SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone=”US/Central”;
SELECT NOW(),TIMEDIFF(NOW(),UTC_TIMESTAMP();

CONVERT_TZ

• Can use offsets:
SELECT CONVERT_TZ(NOW(),'-5:00','+0:00');
• Can use named time zones if the time zone tables

are loaded:
• Can mix both:
SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');
• Can use session/global variables:
Can mix both:
SELECT NOW(), UTC_TIMESTAMP,
CONVERT_TZ(NOW(),@@session.time_zone,'+0:00');

Most importantly....

• Be careful!
• Do not forget about existing data
• Mass-conversions can be done like:
UPDATE tbl SET fld=fld+INTERVAL offset HOUR
• Or use INTERVAL offset SECOND and the

information from mysql.time_zone_transition_type
• only replicated properly in MySQL 5.0+:
 CONVERT_TZ(NOW(),@@session.time_zone,'+0:00');

Learn more...

• Experiment and test
• Especially with master/slave and different time

zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html

01/15/10

01/15/10 1

Time Z ones and M yS QL
Presented by:

Sheeri K. Cabral

 2

ISO SQL:2003 Standard Datetime

• Standard data types (supported by MySQL):
– DATE
– TIME(p)
– TIMESTAMP(p)

• Standard attributed (not supported by MySQL):
– WITH TIME ZONE
– WITHOUT TIME ZONE

 3

MySQL Additional data types

• YEAR(2)
• YEAR(4)

– If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

• DATETIME

 4

MySQL Datetime data types

• DATE – 3 bytes 1000-01-01 to 9999-12-31
• DATETIME – 8 bytes

– 1000-01-01 00:00:00 to 9999-12-31 23:59:59
• TIMESTAMP – 4 bytes

– 1970-01-01 00:00:00 to 2038-01-18 22:14:07
• TIME – 3 bytes -838:59:59 to 838:59:58
• YEAR(2) – 1 byte 00 to 99
• YEAR(4) – 1 byte 1901 to 2155

 5

Time Zones in MySQL Data Types

• Not supported
• However, TIMESTAMP is stored transparently in
UTC.

– Uses the time_zone system variable to convert
– When retrieved, converts to current time_zone value

in the server
– If '2009-05-08 17:00:00' is stored when time_zone is

set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'

 6

TIMESTAMP stored in UTC

CREATE TABLE time_test (
ts TIMESTAMP,
dt DATETIME
) ENGINE=MyISAM;
INSERT INTO time_test (ts,dt)
VALUES (NOW(),NOW());
SELECT * FROM time_test;
{change time zone, look again}

 7

The mysqld time zone

• When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable
• By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.
• If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.
• Only TIMESTAMP data type fields change.

– It bears repeating!

 8

Getting the current datetime

• CURRENT_TIMESTAMP() is the ISO:SQL 2003
standard function, and is supported by MySQL
• NOW() is an alias to CURRENT_TIMESTAMP
 mysql> SELECT NOW(),SLEEP(5),NOW()\G
********************** 1. row **********************
 NOW(): 2009-12-01 21:42:25
SLEEP(5): 0
 NOW(): 2009-12-01 21:42:25
1 row in set (5.00 sec)

• CURRENT_TIMESTAMP() is replication-safe.
– It is calculated at the beginning of a statement and

used throughout the statement.

 9

Getting the current datetime

• UTC_TIMESTAMP() is replication-safe and based
on CURRENT_TIMESTAMP
 mysql> SELECT
UTC_TIMESTAMP(),SLEEP(5),UTC_TIMESTAMP()\G
********************** 1. row **********************
 NOW(): 2009-12-01 21:43:12
SLEEP(5): 0
 NOW(): 2009-12-01 21:43:12
1 row in set (5.00 sec)

• Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.

 10

Getting the current datetime

• SYSDATE() is very familiar to Oracle DBA's/dev's.
mysql> SELECT SYSDATE(),SLEEP(5),SYSDATE()\G
********************** 1. row **********************
SYSDATE(): 2009-12-01 21:44:39
 SLEEP(5): 0
SYSDATE(): 2009-12-01 21:44:44
1 row in set (5.00 sec)

• SYSDATE() is, by default, not safe for replication
– It uses the system date and time
– It is calculated on an as-needed basis
– Will produce different values on a master and slave if

the slave's time zone is different

 11

Making SYSDATE() act like NOW()

• sysdate-is-now
– static system variable, must restart the server
– Does not show up in SHOW VARIABLES (or SHOW

STATUS)
– SYSDATE() acts like CURRENT_TIMESTAMP() and

NOW()
– default is off

 12

Sources of Information
• If the web/application server has a different time

zone than the [master] database server, that can
cause problems.

• Webserver: GMT
• Database server: EST (GMT-5)
• An order comes in on Dec. 31st, 2009 at 10 pm EST
• If the web/application server determines the time,

the order will be logged in Jan 2010
• If the database server determines the time, the

order will be logged in Dec 2009

 13

Ways to Convert in MySQL

• CONVERT_TZ to convert times
– CONVERT_TZ(<time>,<convert_from>,<convert_to>
– CONVERT_TZ(NOW(),'-5:00','+0:00');
– Offset is from UTC

• Daylight Saving Time can wreak havoc
– The day DST occurs is different for different countries

 14

“It's all local” approach
• Just store the times and dates as local time.

– Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

• This can skew reporting, particularly when
estimating peak times.

• This is problematic when a user's perspective
changes to a different time zone.

– My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.

 15

“It's all local” conversion
• Example: Storing 2 different events, at the same

absolute time, in EST and CST:
CREATE TABLE store_times (
st datetime,
os tinyint,
tz varchar(6)) ENGINE=MyISAM;
INSERT INTO store_times (dt, os, tz) VALUES
(NOW(), -5, 'EST'), (NOW(), -6, 'CST');

TIMEDIFF(NOW(),UTC_TIMESTAMP()); --offset
SELECT CONCAT(dt + INTERVAL os HOUR,
 ' ', tz)
 FROM store_times;

 16

“It all works out” approach
• Just store the times and dates one way, and if the

data is not 100% accurate for “what day/hour did
this come in”, it's still precise, relatively accurate.

– 3 pm PST and 6 pm EST are “the same time”
• For most companies, relative time is important

– It's often less important to know that “3 – 6 pm is
peak time in each time zone” and more important to
know that “peak time is 3 pm – 9 pm EST”.

– Any day or year straddling is consistent – the most
important thing is not to change your cutoff once
you make it. If it's midnight EST, then a 10 pm PST
order will be considered the next day, but it will
always be considered such.

 17

“Store it all in GMT” approach

• Conversion for storing/retrieving events not in GMT
• It is easier to let a user change their display

preference
• Application-aware reports may not match

application-unaware reports
– Peak application traffic may be offset with peak

network traffic, CPU load, etc.
• Daylight Saving Time can still be an issue

– When you “fall back”, 2x volume between 2-3 am
– Not as much of an issue when you “spring ahead”

 18

“Store it all in UTC” approach

• All time values are converted for storage/retrieval

• Harder to set up properly

• May be the only way to have true unified reporting
– Most companies do not want nor need to spend the

time and effort necessary for this.

 19

What most companies do

• By default, the “it will all work out approach”

• If they need to re-consider, “Store it all in GMT”

 20

Problems

• When the server time zone changes
– Stop MySQL, change time zone, start mysql

• When the application server(s) and web server(s)
are different times from each other or the
database server(s).

• What do 2 events at the same time mean?
– Same server time – ie, 6 pm EST = 5 pm CST
– Same local time – ie, 6 pm EST = 6 pm CST
– Same time as HQ or “where reports are run from”?

 21

The mysqld time zone (repeated slide)

• When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable
• By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.
• If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.
• Only TIMESTAMP data type fields change.

– It bears repeating!

 22

Changing the default MySQL time zone
• Set the timezone option to mysqld_safe:
 [mysqld_safe]
 timezone=tz_name

• Or set the TZ environment variable before starting
MySQL
• Values are system-dependent
• SET GLOBAL time_zone=timezone

 23

Changing a session's MySQL time zone

• Changing the session affects time values:
 SET SESSION time_zone=”-8:00”;
 SELECT NOW(),UTC_TIMESTAMP();
 SELECT * FROM time_test;
 SELECT @@global_time_zone, @@session.time_zone;

– Changes for the session only
– Affects NOW(), SYSDATE() and TIMESTAMP
– Does not affect UTC_TIMESTAMP(), DATETIME

 24

Using Named Time Zones

• Named time zone = “US/Eastern” or “EST”
• Load information into the mysql system database:

– time_zone (tz_id, use_leap_seconds)
– time_zone_name (tz_id, name)
– time_zone_leap_second (transition_time, correction)
– time_zone_transition (tz_id, transition_time, tt_id)
– time_zone_transition_type (tz_id, tt_id, offset, is_dst,

abbreviation)

 25

Loading Time Zone Info
• Some OS have time zone info, in a directory like

/usr/share/zoneinfo
– Linux
– Sun Solaris
– FreeBSD
– Mac OS X

• Use the following command:
mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u user -p mysql

• Or download MyISAM tables from
http://dev.mysql.com/downloads/timezones.html

• Reload periodically (in 2007 DST dates changed)

 26

Loading Time Zone Info

$ mysql_tzinfo_to_sql /usr/share/zoneinfo > tz.sql
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh87' as time

zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time

zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time

zone. Skipping it.
$ mysql -u root -p mysql < tz.sql

 27

Testing Time Zone Info
SELECT time_zone_id FROM time_zone_name where

name='US/Eastern'\G
SELECT offset, is_DST, abbreviation FROM time_zone_transition_type

where time_zone_id=561;
+--------+--------+--------------+
| offset | is_DST | Abbreviation |
+--------+--------+--------------+
-14400	1	EDT
-18000	0	EST
-14400	1	EWT
-14400	1	EPT
+--------+--------+--------------+
4 rows in set (0.00 sec)
SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone=”US/Central”;
SELECT NOW(),TIMEDIFF(NOW(),UTC_TIMESTAMP();

 28

CONVERT_TZ

• Can use offsets:
SELECT CONVERT_TZ(NOW(),'-5:00','+0:00');
• Can use named time zones if the time zone tables

are loaded:
• Can mix both:
SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');
• Can use session/global variables:
Can mix both:
SELECT NOW(), UTC_TIMESTAMP,
CONVERT_TZ(NOW(),@@session.time_zone,'+0:00');

 29

Most importantly....

• Be careful!
• Do not forget about existing data
• Mass-conversions can be done like:
UPDATE tbl SET fld=fld+INTERVAL offset HOUR
• Or use INTERVAL offset SECOND and the

information from mysql.time_zone_transition_type
• only replicated properly in MySQL 5.0+:
 CONVERT_TZ(NOW(),@@session.time_zone,'+0:00');

 30

Learn more...

• Experiment and test
• Especially with master/slave and different time

zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html

