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ISO SQL:2003 Standard Datetime

« Standard data types (supported by MySQL):

_ DATE
_ TIME(p)
~ TIMESTAMP(p)

« Standard attributed (not supported by MySQL):

— WITH TIME ZONE
— WITHOUT TIME ZONE
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MySQL Additional data types

. YEAR(2)
. YEAR(4)

— If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

 DATETIME
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MySQL Datetime data types

* DATE — 3 bytes 1000-01-01 to 9999-12-31
 DATETIME — 8 bytes
—1000-01-01 00:00:00 to 9999-12-31 23:59:59

 TIMESTAMP — 4 bytes
—1970-01-01 00:00:00 to 2038-01-18 22:14:07

* TIME — 3 bytes -838:59:59 to 838:59:58
* YEAR(2) — 1 byte 00 to 99
* YEAR(4) — 1 byte 1901 to 2155
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Time Zones in MySQL Data Types

* Not supported

* However, TIMESTAMP is stored transparently in
UTC.

— Uses the time_zone system variable to convert

— When retrieved, converts to current time_zone value
In the server

— 1f '2009-05-08 17:00:00' is stored when time_zone is
set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'
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TIMESTAMP stored in UTC

CREATE TABLE time test (
ts TIMESTAMP,

dt DATETIME

) ENGINE=MyISAM;

INSERT INTO time test (ts,dt)
VALUES (NOW () ,NOW()) ;

SELECT * FROM time test;

{change time zone, look again}




The mysqgld time zone

« When mysqld starts, it finds the OS time zone and
sets system_ time zone system variable

» By default, the time_zone system variable is set to
SYSTEM, and system_time zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!
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Getting the current datetime

« CURRENT_TIMESTAMP() is the ISO:SQL 2003
standard function, and is supported by MySQL

» NOW() is an alias to CURRENT _TIMESTAMP

mysgl> SELECT NOW (), SLEEP (5),NOW () \G

IR AR R A b g A g i A i A i A A i i i i i i ¢ 1 rOw IR AR R A b g A g i A i A i A A i i i g i i ¢

NOW () : 2009-12-01 21:42:25

SLEEP (5): O
NOW () : 2009-12-01 21:42:25
1 row 1n set (5.00 sec)

« CURRENT_TIMESTAMP() is replication-safe.

— It is calculated at the beginning of a statement and
used throughout the statement.
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Getting the current datetime

« UTC _TIMESTAMP() is replication-safe and based
on CURRENT _TIMESTAMP

mysql> SELECT
UTC TIMESTAMP (), SLEEP (5),UTC TIMESTAMP () \G

R R R R R R R R R R R R R E R 1 TrOw IR A R A e b b b I b b A i A A i i i i i i ¢

NOW () : 2009-12-01 21:43:12
SLEEP(5): O

NOW () : 2009-12-01 21:43:12
1 row 1n set (5.00 sec)

» Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.
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Getting the current datetime

« SYSDATE() is very familiar to Oracle DBA's/devV's.

mysqgl> SELECT SYSDATE (), SLEEP (5), SYSDATE () \G

IR AR R A b G A i i i i A i A A i i i g i i ¢ 1 rOw IR AR R A e G A i i i i A i i A i i i g i i ¢

SYSDATE () : 2009-12-01 21:44:39
SLEEP (5): O
SYSDATE () : 2009-12-01 21:44:44

1 row 1n set (5.00 sec)

« SYSDATE() is, by default, not safe for replication

— It uses the system date and time
— |t is calculated on an as-needed basis

— Will produce different values on a master and slave if
the slave's time zone is different
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Making SYSDATE() act like NOW()

 sysdate-is-now
— static system variable, must restart the server

— Does not show up in SHOW VARIABLES (or SHOW
STATUS)

_ SYSDATE() acts like CURRENT TIMESTAMP() and
NOW()

— default is off
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Sources of Information

* |f the web/application server has a different time
zone than the [master] database server, that can
cause problems.

 Webserver: GMT
« Database server: EST (GMT-5)
 An order comes in on Dec. 31%, 2009 at 10 pm EST

* If the web/application server determines the time,
the order will be logged in Jan 2010

e |f the database server determines the time, the
order will be logged in Dec 2009
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Ways to Convert in MySQL

« CONVERT TZ to convert times

— CONVERT _TZ(<time>,<convert_from> <convert to>
— CONVERT_TZ(NOW(),'-5:00",'+0:00");
— Offset is from UTC

« Daylight Saving Time can wreak havoc
— The day DST occurs is different for different countries
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“It's all local” approach

« Just store the times and dates as local time.

— Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

* This can skew reporting, particularly when
estimating peak times.

* This Is problematic when a user's perspective
changes to a different time zone.

— My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.
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“It's all local” conversion

« Example: Storing 2 different events, at the same
absolute time, in EST and CST-:

CREATE TABLE store times (

st datetime, -

os tinyint,

tz wvarchar (o) ) ENGINE=MyISAM;

INSERT INTO store times (dt, os, tz) VALUES
(NOW()r _51 'EST')r (NOW()r _61 'CST');

TIMEDIFE (NOW () ,UTC TIMESTAMP ()); —--offset
SELECT CONCAT (dt + INTERVAL os HOUR,

! V, tz)
FROM store times;
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“It all works out” approach

 Just store the times and dates one way, and if the
data is not 100% accurate for “what day/hour did
this come In”, it's still precise, relatively accurate.

— 3 pm PST and 6 pm EST are “the same time”
* For most companies, relative time is important

— It's often less important to know that “3 — 6 pm is
peak time in each time zone” and more important to

know that “peak time is 3

pm—9 pm EST".

— Any day or year straddling is consistent — the most

important thing is not to c
you make it. If it's midnig
order will be considered t

nange your cutoff once
Nt EST, thena 10 pm PST

ne next day, but it will

always be considered such.
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“Store it all in GMT” approach

« Conversion for storing/retrieving events not in GMT

* |t is easier to let a user change their display
preference

» Application-aware reports may not match
application-unaware reports

— Peak application traffic may be offset with peak
network traffic, CPU load, etc.

« Daylight Saving Time can still be an issue

— When you “fall back”, 2x volume between 2-3 am
— Not as much of an issue when you “spring ahead”
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“Store it all in UTC” approach

 All time values are converted for storage/retrieval
« Harder to set up properly

« May be the only way to have true unified reporting

— Most companies do not want nor need to spend the
time and effort necessary for this.
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What most companies do

« By default, the “it will all work out approach”

* If they need to re-consider, “Store it all in GMT”




Problems

* When the server time zone changes
— Stop MySQL, change time zone, start mysq|

* When the application server(s) and web server(s)
are different times from each other or the
database server(s).

« \What do 2 events at the same time mean?

— Same server time —ie, 6 pm EST =5 pm CST
— Same local time —ie, 6 pm EST =6 pm CST
— Same time as HQ or “where reports are run from”?
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The mysqld time zone (repeated slide)

« When mysqld starts, it finds the OS time zone and
sets system_ time zone system variable

» By default, the time_zone system variable is set to
SYSTEM, and system_time zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!
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Changing the default MySQL time zone

» Set the timezone option to mysqld _safe:

[mysgld safe]
timezone=tz name

 Or set the TZ environment variable before starting
MySQL

» Values are system-dependent
« SET GLOBAL time zone=timezone
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Changing a session's MySQL time zone

« Changing the session affects time values:

SET SESSION time zone="-8:00";
SELECT NOW () ,UTC TIMESTAMP () ;
SELECT * FROM time test;

SELECT @@global time zone, (@@session.time zone;

— Changes for the session only
— Affects NOW(), SYSDATE() and TIMESTAMP
— Does not affect UTC_TIMESTAMP(), DATETIME
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Using Named Time Zones

 Named time zone = “US/Eastern” or “EST”

« Load information into the mysql system database:
—time_zone (tz_id, use leap_seconds)
— time_zone _name (iz_id, name)
—time_zone leap second (transition_time, correction)
—time_zone_transition (tz_id, transition_time, tt_id)

—time_zone_transition_type (tz _id, tt_id, offset, is_dst,
abbreviation)
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Loading Time Zone Info

« Some OS have time zone info, in a directory like
/usr/share/zoneinfo

— Linux

— Sun Solaris
— FreeBSD

— Mac OS X

» Use the following command:
mysql tzinfo to sql /usr/share/zoneinfo | mysqgl -u user -p mysq|

* Or download MylSAM tables from
http://dev.mysql.com/downloads/timezones.html

» Reload periodically (in 2007 DST dates changed)
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Loading Time Zone Info

$ mysql tzinfo_to sql /usr/share/zoneinfo > tz.sql

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh87' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time
zone. Skipping it.

$ mysql -u root -p mysql < tz.sql
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Testing Time Zone Info

SELECT time_zone_id FROM time_zone_name where
name='US/Eastern'\G

SELECT offset, is DST, abbreviation FROM time_zone_transition_type
where time_zone id=561;

Fom——— Fom——— o - +
| offset | 1s DST | Abbreviation |
————— ——————— ——_—— = +
| -14400 | 1 | EDT |
| =18000 | O | EST |
| -14400 | 1 | EWT |
| -14400 | 1 | EPT |
——— ——— ——_—_———————— +
4 rows 1n set (0.00 sec)

SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone="US/Central”;
SELECT NOW(), TIMEDIFF(NOW(),UTC_TIMESTAMP();
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CONVERT TZ

« Can use offsets:
SELECT CONVERT_TZ(NOW(),'—5:00','+O:OO');

« Can use named time zones if the time zone tables
are loaded:

« Can mix both:

SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');

» Can use session/global variables:

Can mix both:
SELECT NOW(), UTC TIMESTAMP,

CONVERT TZ (NOW(),@@session.time zone, '+0:00");
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Most importantly....

» Be careful!
* Do not forget about existing data

« Mass-conversions can be done like:
UPDATE tbl SET fld=fld+INTERVAL offset HOUR

« Oruse INTERVAL offset SECOND and the
information from mysql.time_zone transition_type

 only replicated properly in MySQL 5.0+:

CONVERT TZ (NOW (), @@session.time zone, '+0:00");
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Learn more...

« Experiment and test

» Especially with master/slave and different time
Zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html
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ISO SQL:2003 Standard Datetime

+ Standard data types (supported by MySQL):
— DATE
— TIME(p)
— TIMESTAMP(p)
« Standard attributed (not supported by MySQL):

— WITH TIME ZONE
— WITHOUT TIME ZONE
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MySQL Additional data types

- YEAR(2)
- YEAR(4)

— If YEAR is specified with no quantifier, or a quantifier
other than 2, MySQL will use YEAR(4)

* DATETIME
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MySQL Datetime data types

* DATE — 3 bytes 1000-01-01 to 9999-12-31
* DATETIME — 8 bytes
—1000-01-01 00:00:00 to 9999-12-31 23:59:59

* TIMESTAMP — 4 bytes
—1970-01-01 00:00:00 to 2038-01-18 22:14:07

* TIME — 3 bytes -838:59:59 to 838:59:58
* YEAR(2) — 1 byte 00 to 99
* YEAR(4) — 1 byte 1901 to 2155
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Time Zones in MySQL Data Types

* Not supported

* However, TIMESTAMP is stored transparently in
UTC.
— Uses the time_zone system variable to convert

— When retrieved, converts to current time_zone value
in the server

— 1f '2009-05-08 17:00:00' is stored when time_zone is
set to EST, and later the time_zone is changed to
CST, the value retrieved will be '2009-05-08
16:00:00'




TIMESTAMP stored in UTC

CREATE TABLE time test (
ts TIMESTAMP,

dt DATETIME

) ENGINE=MyISAM;

INSERT INTO time test (ts,dt)
VALUES (NOW () ,NOW()) ;

SELECT * FROM time test;

{change time zone, look again}
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The mysqld time zone

* When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable

* By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!
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Getting the current datetime

* CURRENT_TIMESTAMP() is the 1ISO:SQL 2003
standard function, and is supported by MySQL

* NOW() is an alias to CURRENT_TIMESTAMP

mysgl> SELECT NOW (), SLEEP (5),NOW () \G

B i b b b b b b i b b I b b b b g b b a4 l. rOw R b b b b b b b b b b i b b b b b b 4
NOW () : 2009-12-01 21:42:25

SLEEP (5): O
NOW () : 2009-12-01 21:42:25

1 row in set (5.00 sec)

* CURRENT_TIMESTAMP() is replication-safe.

— It is calculated at the beginning of a statement and
used throughout the statement.
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Getting the current datetime

*« UTC_TIMESTAMP() is replication-safe and based
on CURRENT_TIMESTAMP

mysqgl> SELECT
UTC TIMESTAMP (), SLEEP (5),UTC TIMESTAMP ()\G

Kk ok kkkkkkkhkkhkkkkhkxkkk*x 1 ro% LR R I I db i db i db b I b db b S db S db S 4

NOW () : 2009-12-01 21:43:12
SLEEP (5): O

NOW () : 2009-12-01 21:43:12
1 row in set (5.00 sec)

* Because it is based on CURRENT_TIMESTAMP(),
it is calculated at the beginning of a statement and
used throughout the statement.
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Getting the current datetime

* SYSDATE() is very familiar to Oracle DBA's/dev's.

mysql> SELECT SYSDATE (), SLEEP (5), SYSDATE () \G

B i b b b b b b i b b I b b b b g b b a4 l. rOw L I b e b b b b b b b b b b i b b b b b b 4
SYSDATE () : 2009-12-01 21:44:39

SLEEP (5): O

SYSDATE () : 2009-12-01 21:44:44

1 row in set (5.00 sec)

* SYSDATE() is, by default, not safe for replication
— It uses the system date and time
— It is calculated on an as-needed basis

— Will produce different values on a master and slave if
the slave's time zone is different




Making SYSDATE() act like NOW()

* sysdate-is-now
— static system variable, must restart the server

— Does not show up in SHOW VARIABLES (or SHOW
STATUS)

— SYSDATE() acts like CURRENT_TIMESTAMP() and
NOW()

— default is off




Sources of Information

If the web/application server has a different time
zone than the [master] database server, that can
cause problems.

Webserver: GMT
Database server: EST (GMT-5)
An order comes in on Dec. 31*, 2009 at 10 pm EST

If the web/application server determines the time,
the order will be logged in Jan 2010

If the database server determines the time, the
order will be logged in Dec 2009
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Ways to Convert in MySQL

« CONVERT _TZ to convert times
— CONVERT _TZ(<time>,<convert_from>,<convert_to>
— CONVERT_TZ(NOWY(),'-5:00','+0:00");
— Offset is from UTC

+ Daylight Saving Time can wreak havoc
— The day DST occurs is different for different countries




“It's all local” approach

» Just store the times and dates as local time.

— Events that occur at 6 pm PST and 6 pm EST are
considered “the same time”

 This can skew reporting, particularly when
estimating peak times.

* This is problematic when a user's perspective
changes to a different time zone.

— My cellphone auto-adjusts my time based on time
zone in my location, my computer does not.




“It's all local” conversion

* Example: Storing 2 different events, at the same
absolute time, in EST and CST:

CREATE TABLE store times (

st datetime, -

os tinyint,

tz varchar (6) ) ENGINE=MyISAM;

INSERT INTO store times (dt, os, tz) VALUES
(NOW (), -5, 'EST'), (NOwW(), -6, 'CST');

TIMEDIFF (NOW () ,UTC TIMESTAMP()); --offset
SELECT CONCAT (dt + INTERVAL os HOUR,

' |, tZ)
FROM store times;
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“It all works out” approach

+ Just store the times and dates one way, and if the
data is not 100% accurate for “what day/hour did
this come in”, it's still precise, relatively accurate.

—3 pm PST and 6 pm EST are “the same time”
* For most companies, relative time is important

— It's often less important to know that “3 — 6 pm is
peak time in each time zone” and more important to
know that “peak time is 3 pm — 9 pm EST".

— Any day or year straddling is consistent — the most
important thing is not to change your cutoff once
you make it. If it's midnight EST, then a 10 pm PST
order will be considered the next day, but it will
always be considered such.




“Store it all in GMT” approach

Conversion for storing/retrieving events not in GMT

It is easier to let a user change their display
preference

Application-aware reports may not match
application-unaware reports

— Peak application traffic may be offset with peak
network traffic, CPU load, etc.

Daylight Saving Time can still be an issue

— When you “fall back”, 2x volume between 2-3 am
— Not as much of an issue when you “spring ahead”




“Store it all in UTC” approach

« All time values are converted for storage/retrieval

» Harder to set up properly

* May be the only way to have true unified reporting

— Most companies do not want nor need to spend the
time and effort necessary for this.




What most companies do

* By default, the “it will all work out approach”

* If they need to re-consider, “Store it all in GMT”
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Problems

* When the server time zone changes
— Stop MySQL, change time zone, start mysq|

* When the application server(s) and web server(s)
are different times from each other or the
database server(s).

* What do 2 events at the same time mean?

— Same server time —ie, 6 pm EST =5 pm CST
— Same local time — ie, 6 pm EST =6 pm CST
— Same time as HQ or “where reports are run from”?




The mysqld time zone (repeated slide)

* When mysqld starts, it finds the OS time zone and
sets system_time_zone system variable

* By default, the time_zone system variable is set to
SYSTEM, and system_time_zone is used.

* If the OS time zone changes, mysql needs to be
restarted for TIMESTAMP variables to change.

* Only TIMESTAMP data type fields change.
— It bears repeating!
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Changing the default MySQL time zone

* Set the timezone option to mysqld_safe:

[mysqgld safe]
timezone=tz_name

* Or set the TZ environment variable before starting
MySQL

* Values are system-dependent
« SET GLOBAL time zone=timezone
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Changing a session's MySQL time zone

* Changing the session affects time values:

SET SESSION time zone="-8:00";
SELECT NOW(),UTC TIMESTAMP () ;

SELECT * FROM time test;
SELECT @@global time zone, (@@session.time zone;

— Changes for the session only
— Affects NOW(), SYSDATE() and TIMESTAMP
— Does not affect UTC_TIMESTAMP(), DATETIME




Using Named Time Zones

* Named time zone = “US/Eastern” or “EST”

* Load information into the mysql system database:
—time_zone (tz_id, use_leap_seconds)
—time_zone_name (tz_id, name)
—time_zone_leap_second (transition_time, correction)
—time_zone_transition (tz_id, transition_time, tt_id)

—time_zone_transition_type (iz_id, tt_id, offset, is_dst,
abbreviation)




Loading Time Zone Info

Some OS have time zone info, in a directory like
lusr/share/zoneinfo

— Linux
— Sun Solaris
— FreeBSD
—Mac OS X
Use the following command:
mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u user -p mysq|l

Or download MyISAM tables from
http://dev.mysqgl.com/downloads/timezones.html

Reload periodically (in 2007 DST dates changed)
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Loading Time Zone Info

$ mysql_tzinfo_to_sql /usr/share/zoneinfo > tz.sql

Warning: Unable to load 'fusr/share/zoneinfo/Asia/Riyadh87' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time
zone. Skipping it.

Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time
zone. Skipping it.

$ mysql -u root -p mysqgl < tz.sql
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Testing Time Zone Info

SELECT time_zone_id FROM time_zone_name where
name='US/Eastern'\G

SELECT offset, is_DST, abbreviation FROM time_zone_transition_type
where time_zone_id=561;

o o o —— +
| offset | is DST | Abbreviation |
o o e —— +
| =14400 | 1 | EDT
| =18000 | 0 | EST
| =14400 | 1 | EWT
| -14400 | 1 | EPT
e e e —— +

4 rows in set (0.00 sec)

SELECT -18000/60/60, -14400/60/60;
SET SESSION time_zone="US/Central”;
SELECT NOW(), TIMEDIFF(NOW(),UTC_TIMESTAMP();

Pythian




CONVERT_TZ

+ Can use offsets:

SELECT CONVERT TZ (NOW(),'-5:00","'+0:00");

« Can use named time zones if the time zone tables
are loaded:

+ Can mix both:

SELECT CONVERT_TZ(NOW(),'US/Eastern','GMT');

* Can use session/global variables:

Can mix both:
SELECT NOW (), UTC TIMESTAMP,

CONVERT TZ (NOW(),@@session.time zone, '+0:00'");
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Most importantly....

* Be careful!
* Do not forget about existing data

* Mass-conversions can be done like:
UPDATE tbl SET fld=f1d+INTERVAL offset HOUR

e Oruse INTERVAL offset SECOND and the
information from mysql.time_zone_transition_type

+ only replicated properly in MySQL 5.0+:

CONVERT TZ (NOW (), @@session.time zone, '+0:00');




Learn more...

» Experiment and test

+ Especially with master/slave and different time
zones

http://dev.mysql.com/doc/refman/5.1/en/time-zone-support.html
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